interview-bot / app.py
adeelshuaib's picture
Update app.py
8f33c3e verified
raw
history blame
3.4 kB
# Import required libraries
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
from speechbrain.pretrained import Tacotron2, HIFIGAN, EncoderDecoderASR
# Load Hugging Face psychometric model
psych_model_name = "KevSun/Personality_LM" # Big Five personality traits
psych_model = pipeline("text-classification", model=psych_model_name)
# Load ASR model
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-rnnlm-librispeech", savedir="tmp_asr")
# Load TTS model
tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmp_tts")
voc_model = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmp_voc")
# Psychometric Test Questions
text_questions = [
"How do you handle criticism?",
"Describe a time when you overcame a challenge.",
"What motivates you to work hard?"
]
audio_questions = [
"What does teamwork mean to you?",
"How do you handle stressful situations?"
]
# Function to analyze text response
def analyze_text_responses(responses):
analysis = [psych_model(response)[0] for response in responses]
traits = {response["label"]: response["score"] for response in analysis}
return traits
# Function to handle TTS
def generate_audio_question(question):
mel_output, alignment, _ = tts_model.encode_text(question)
waveforms = voc_model.decode_batch(mel_output)
return waveforms[0].numpy()
# Function to process audio response
def process_audio_response(audio):
text_response = asr_model.transcribe_file(audio)
return text_response
# Gradio interface functions
def text_part(candidate_name, responses):
traits = analyze_text_responses(responses)
df = pd.DataFrame(traits.items(), columns=["Trait", "Score"])
plt.figure(figsize=(8, 6))
plt.bar(df["Trait"], df["Score"], color="skyblue")
plt.title(f"Psychometric Analysis for {candidate_name}")
plt.xlabel("Traits")
plt.ylabel("Score")
plt.xticks(rotation=45)
plt.tight_layout()
return df, plt
def audio_part(candidate_name, audio_responses):
text_responses = [process_audio_response(audio) for audio in audio_responses]
traits = analyze_text_responses(text_responses)
df = pd.DataFrame(traits.items(), columns=["Trait", "Score"])
plt.figure(figsize=(8, 6))
plt.bar(df["Trait"], df["Score"], color="lightcoral")
plt.title(f"Audio Psychometric Analysis for {candidate_name}")
plt.xlabel("Traits")
plt.ylabel("Score")
plt.xticks(rotation=45)
plt.tight_layout()
return df, plt
# Gradio UI
def chat_interface(candidate_name, text_responses, audio_responses):
text_df, text_plot = text_part(candidate_name, text_responses)
audio_df, audio_plot = audio_part(candidate_name, audio_responses)
return text_df, text_plot, audio_df, audio_plot
text_inputs = [gr.Textbox(label=f"Response to Q{i+1}: {q}") for i, q in enumerate(text_questions)]
audio_inputs = [gr.Audio(label=f"Response to Q{i+1}: {q}", type="file") for i, q in enumerate(audio_questions)]
interface = gr.Interface(
fn=chat_interface,
inputs=[gr.Textbox(label="Candidate Name")] + text_inputs + audio_inputs,
outputs=["dataframe", "plot", "dataframe", "plot"],
title="Psychometric Analysis Chatbot"
)
# Launch chatbot
interface.launch()