# Import required libraries from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import gradio as gr import matplotlib.pyplot as plt import pandas as pd from speechbrain.pretrained import Tacotron2, HIFIGAN, EncoderDecoderASR # Load Hugging Face psychometric model psych_model_name = "KevSun/Personality_LM" # Big Five personality traits psych_model = pipeline("text-classification", model=psych_model_name) # Load ASR model asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-rnnlm-librispeech", savedir="tmp_asr") # Load TTS model tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmp_tts") voc_model = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmp_voc") # Psychometric Test Questions text_questions = [ "How do you handle criticism?", "Describe a time when you overcame a challenge.", "What motivates you to work hard?" ] audio_questions = [ "What does teamwork mean to you?", "How do you handle stressful situations?" ] # Function to analyze text response def analyze_text_responses(responses): analysis = [psych_model(response)[0] for response in responses] traits = {response["label"]: response["score"] for response in analysis} return traits # Function to handle TTS def generate_audio_question(question): mel_output, alignment, _ = tts_model.encode_text(question) waveforms = voc_model.decode_batch(mel_output) return waveforms[0].numpy() # Function to process audio response def process_audio_response(audio): text_response = asr_model.transcribe_file(audio) return text_response # Gradio interface functions def text_part(candidate_name, responses): traits = analyze_text_responses(responses) df = pd.DataFrame(traits.items(), columns=["Trait", "Score"]) plt.figure(figsize=(8, 6)) plt.bar(df["Trait"], df["Score"], color="skyblue") plt.title(f"Psychometric Analysis for {candidate_name}") plt.xlabel("Traits") plt.ylabel("Score") plt.xticks(rotation=45) plt.tight_layout() return df, plt def audio_part(candidate_name, audio_responses): text_responses = [process_audio_response(audio) for audio in audio_responses] traits = analyze_text_responses(text_responses) df = pd.DataFrame(traits.items(), columns=["Trait", "Score"]) plt.figure(figsize=(8, 6)) plt.bar(df["Trait"], df["Score"], color="lightcoral") plt.title(f"Audio Psychometric Analysis for {candidate_name}") plt.xlabel("Traits") plt.ylabel("Score") plt.xticks(rotation=45) plt.tight_layout() return df, plt # Gradio UI def chat_interface(candidate_name, text_responses, audio_responses): text_df, text_plot = text_part(candidate_name, text_responses) audio_df, audio_plot = audio_part(candidate_name, audio_responses) return text_df, text_plot, audio_df, audio_plot text_inputs = [gr.Textbox(label=f"Response to Q{i+1}: {q}") for i, q in enumerate(text_questions)] audio_inputs = [gr.Audio(label=f"Response to Q{i+1}: {q}", type="file") for i, q in enumerate(audio_questions)] interface = gr.Interface( fn=chat_interface, inputs=[gr.Textbox(label="Candidate Name")] + text_inputs + audio_inputs, outputs=["dataframe", "plot", "dataframe", "plot"], title="Psychometric Analysis Chatbot" ) # Launch chatbot interface.launch()