Spaces:
Runtime error
Runtime error
# Install Gradio for creating an interface | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from peft import AutoPeftModelForCausalLM | |
from threading import Thread | |
# Load the fine-tuned model and tokenizer | |
new_model = "adhisetiawan/phi2_DPO" | |
model = AutoPeftModelForCausalLM.from_pretrained(new_model, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
load_in_4bit=True,) | |
tokenizer = AutoTokenizer.from_pretrained(new_model) | |
model = model.to('cuda:0') | |
# Define stopping criteria | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] # Token IDs to stop the generation | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
# Define the prediction function | |
def predict(message, history): | |
# Transform history into the required format | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
# Format messages for the model | |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
# Set up the streamer and generate responses | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Yield partial messages as they are generated | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
# Launch Gradio Chat Interface | |
gr.ChatInterface(predict).queue().launch(debug=True) |