|
import os |
|
import io |
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import utils |
|
from inference.infer_tool import Svc |
|
import logging |
|
import soundfile |
|
import argparse |
|
import gradio.processing_utils as gr_processing_utils |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
logging.getLogger('markdown_it').setLevel(logging.WARNING) |
|
logging.getLogger('urllib3').setLevel(logging.WARNING) |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
audio_postprocess_ori = gr.Audio.postprocess |
|
|
|
def audio_postprocess(self, y): |
|
data = audio_postprocess_ori(self, y) |
|
if data is None: |
|
return None |
|
return gr_processing_utils.encode_url_or_file_to_base64(data["name"]) |
|
|
|
|
|
gr.Audio.postprocess = audio_postprocess |
|
def create_vc_fn(model, sid): |
|
def vc_fn(input_audio, vc_transform, auto_f0): |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
duration = audio.shape[0] / sampling_rate |
|
if duration > 20 and limitation: |
|
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None |
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != 16000: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) |
|
raw_path = io.BytesIO() |
|
soundfile.write(raw_path, audio, 16000, format="wav") |
|
raw_path.seek(0) |
|
out_audio, out_sr = model.infer(sid, vc_transform, raw_path, |
|
auto_predict_f0=auto_f0, |
|
) |
|
return "Success", (44100, out_audio.cpu().numpy()) |
|
return vc_fn |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--api', action="store_true", default=False) |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
hubert_model = utils.get_hubert_model().to(args.device) |
|
models = [] |
|
for f in os.listdir("models"): |
|
name = f |
|
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model) |
|
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None |
|
models.append((name, cover, create_vc_fn(model, name))) |
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
"# <center> Sovits Models\n" |
|
"## <center> The input audio should be clean and pure voice without background music.\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n" |
|
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)" |
|
" without queue and length limitation.\n\n" |
|
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n" |
|
"Other models:\n" |
|
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n" |
|
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n" |
|
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n" |
|
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n" |
|
|
|
) |
|
with gr.Tabs(): |
|
for (name, cover, vc_fn) in models: |
|
with gr.TabItem(name): |
|
with gr.Row(): |
|
gr.Markdown( |
|
'<div align="center">' |
|
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "" |
|
'</div>' |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '') |
|
vc_transform = gr.Number(label="vc_transform", value=0) |
|
auto_f0 = gr.Checkbox(label="auto_f0", value=False) |
|
vc_submit = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio") |
|
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2]) |
|
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) |