Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,24 +2,23 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
-
# Set up the device
|
6 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
-
|
8 |
# Load model and tokenizer
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("adi2606/MenstrualQA")
|
10 |
tokenizer = AutoTokenizer.from_pretrained("adi2606/MenstrualQA")
|
11 |
|
12 |
# Function to generate a response from the chatbot
|
13 |
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
|
14 |
-
inputs = tokenizer(message, return_tensors="pt").to(device)
|
15 |
|
16 |
# Generate the response
|
17 |
output = model.generate(
|
18 |
inputs['input_ids'],
|
|
|
19 |
max_length=512,
|
20 |
temperature=temperature,
|
21 |
repetition_penalty=repetition_penalty,
|
22 |
-
do_sample=True
|
|
|
23 |
)
|
24 |
|
25 |
# Decode the generated output
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
|
|
|
|
|
|
5 |
# Load model and tokenizer
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("adi2606/MenstrualQA")
|
7 |
tokenizer = AutoTokenizer.from_pretrained("adi2606/MenstrualQA")
|
8 |
|
9 |
# Function to generate a response from the chatbot
|
10 |
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
|
11 |
+
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True).to(device)
|
12 |
|
13 |
# Generate the response
|
14 |
output = model.generate(
|
15 |
inputs['input_ids'],
|
16 |
+
attention_mask=inputs['attention_mask'],
|
17 |
max_length=512,
|
18 |
temperature=temperature,
|
19 |
repetition_penalty=repetition_penalty,
|
20 |
+
do_sample=True,
|
21 |
+
pad_token_id=tokenizer.eos_token_id
|
22 |
)
|
23 |
|
24 |
# Decode the generated output
|