import streamlit as st from transformers import AutoProcessor, AutoModelForCausalLM from PIL import Image import torch # Load the Florence model and processor @st.cache_resource def load_model(): model_id = 'microsoft/Florence-2-large' model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval().to(torch.float32) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) return model, processor # Load the model and processor globally model, processor = load_model() # Function to run the model def run_example(task_prompt, image, text_input=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input # Prepare inputs inputs = processor(text=prompt, images=image, return_tensors="pt") inputs["input_ids"] = inputs["input_ids"].to(torch.float32) inputs["pixel_values"] = inputs["pixel_values"].to(torch.float32) # Ensure the model is in float32 mode # The model has already been converted to float32 during loading, so this is not needed here. # Generate predictions generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) return parsed_answer # Streamlit UI st.title("Microsoft Florence Image Captioning (CPU)") # File uploader uploaded_file = st.file_uploader("Upload an image (PNG or JPG)", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: # Convert and display the image image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) # Generate captions st.subheader("Generated Captions") with st.spinner("Generating caption..."): try: caption = run_example('