Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
import json | |
import logging | |
import os | |
import sys | |
import psycopg2 | |
import s3fs | |
import torch | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from llama_index import (ServiceContext, SimpleDirectoryReader, StorageContext, | |
SummaryIndex, get_response_synthesizer, | |
set_global_service_context) | |
from llama_index.indices.document_summary import DocumentSummaryIndex | |
from llama_index.indices.vector_store import VectorStoreIndex | |
from llama_index.llms import OpenAI | |
from llama_index.schema import IndexNode | |
from llama_index.vector_stores import PGVectorStore | |
from sqlalchemy import make_url | |
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) | |
def get_embed_model(): | |
model_kwargs = {'device': 'cpu'} | |
if torch.cuda.is_available(): | |
model_kwargs['device'] = 'cuda' | |
if torch.backends.mps.is_available(): | |
model_kwargs['device'] = 'mps' | |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity | |
print("Loading model...") | |
try: | |
model_norm = HuggingFaceEmbeddings( | |
model_name="thenlper/gte-small", | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs, | |
) | |
except Exception as exception: | |
print(f"Model not found. Loading fake model...{exception}") | |
exit() | |
print("Model loaded.") | |
return model_norm | |
def create_table(db_name, connection_string): | |
conn = psycopg2.connect(connection_string) | |
conn.autocommit = True | |
with conn.cursor() as c: | |
c.execute(f"DROP DATABASE IF EXISTS {db_name}") | |
c.execute(f"CREATE DATABASE {db_name}") | |
return | |
def create_vector_store(): | |
db_name = "helm" | |
connection_string = "postgresql://adrian@localhost:5432/postgres" | |
create_table(db_name, connection_string) | |
url = make_url(connection_string) | |
vector_store = PGVectorStore.from_params( | |
database=db_name, | |
host=url.host, | |
password=url.password, | |
port=url.port, | |
user=url.username, | |
table_name="f150_manual", | |
embed_dim=384, | |
hybrid_search=True, | |
text_search_config="english", | |
) | |
return vector_store | |
def get_remote_filesystem(): | |
AWS_KEY = "AKIAWCUHDQXX3H7PPRXN" | |
AWS_SECRET = "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" | |
s3 = s3fs.S3FileSystem( | |
key=AWS_KEY, | |
secret=AWS_SECRET, | |
) | |
return s3 | |
def create_vector_index(): | |
docs = SimpleDirectoryReader(input_dir="docs/chapters").load_data() | |
vector_store = create_vector_store() | |
storage_context = StorageContext.from_defaults(vector_store=vector_store) | |
vector_index = VectorStoreIndex.from_documents( | |
docs, | |
storage_context=storage_context, | |
embedding_model=None, | |
show_progress=True, | |
chunk_size=1024, | |
chunk_overlap=20) | |
return vector_index | |
def create_recursive_index(): | |
doc_dir = "./docs/chapters/" | |
doc_summaries = {} | |
titles = [] | |
for filename in os.listdir(doc_dir): | |
print(filename) | |
title = filename.split(".")[0] | |
titles.append(title) | |
docs = SimpleDirectoryReader(input_files=[f"{doc_dir}{filename}"]).load_data() | |
docs[0].doc_id = title | |
doc_summaries[title] = docs | |
context_window = 4096 | |
embed_model = get_embed_model() | |
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo-16k") | |
service_context = ServiceContext.from_defaults( | |
llm=chatgpt, | |
embed_model=embed_model, | |
chunk_size=1024, | |
context_window=context_window) | |
s3 = get_remote_filesystem() | |
nodes = [] | |
for title in titles: | |
print(title) | |
# build vector index | |
storage_context = StorageContext.from_defaults() | |
vector_index = VectorStoreIndex.from_documents( | |
doc_summaries[title], | |
service_context=service_context, | |
verbose=True, | |
storage_context=storage_context, | |
show_progress=True, | |
) | |
vector_index.storage_context.persist(f"f150-user-manual/recursive-agent/{title}/vector_index", fs=s3) | |
# build summary index | |
response_synthesizer = get_response_synthesizer( | |
response_mode="compact_accumulate", use_async=False | |
) | |
storage_context = StorageContext.from_defaults() | |
summary_index = DocumentSummaryIndex.from_documents( | |
doc_summaries[title], | |
service_context=service_context, | |
response_synthesizer=response_synthesizer, | |
verbose=True, | |
storage_context=storage_context, | |
show_progress=True, | |
) | |
print(summary_index.get_document_summary(title)) | |
node = IndexNode(text=summary_index.get_document_summary(title), index_id=title) | |
nodes.append(node) | |
storage_context = StorageContext.from_defaults() | |
vector_index = VectorStoreIndex( | |
nodes, | |
service_context=service_context, | |
verbose=True, | |
storage_context=storage_context, | |
show_progress=True,) | |
vector_index.storage_context.persist("f150-user-manual/recursive-agent/vector_index", fs=s3) | |
def main(): | |
embed_model = get_embed_model() | |
service_context = ServiceContext.from_defaults(embed_model=embed_model) | |
set_global_service_context(service_context) | |
create_vector_index(); | |
create_recursive_index(); | |
if __name__ == "__main__": | |
main() |