Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
#!/usr/bin/env python | |
import json | |
import logging | |
import os | |
import sys | |
import psycopg2 | |
import s3fs | |
import torch | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from llama_index import ServiceContext, set_global_service_context | |
from llama_index.indices.vector_store import VectorStoreIndex | |
from llama_index.llms import OpenAI | |
from llama_index.prompts import PromptTemplate | |
from llama_index.vector_stores import PGVectorStore | |
from sqlalchemy import make_url | |
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) | |
QA_TEMPLATE = """ | |
You are an intelligent and helpful AI Assistant, able to have normal interactions as well as answer questions about my 2023 Ford F150. | |
Below are excerpts from my F150's User Manual. You must only use the information in the context below to formulate your response. | |
If there is not enough information to formulate a response, you must respond with: "I'm sorry, I can't find the answer to your question in the user manual." | |
{context_str} | |
{query_str} | |
""" | |
def get_embed_model(): | |
model_kwargs = {'device': 'cpu'} | |
if torch.cuda.is_available(): | |
model_kwargs['device'] = 'cuda' | |
if torch.backends.mps.is_available(): | |
model_kwargs['device'] = 'mps' | |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity | |
print("Loading model...") | |
try: | |
model_norm = HuggingFaceEmbeddings( | |
model_name="thenlper/gte-small", | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs, | |
) | |
except Exception as exception: | |
print(f"Model not found. Loading fake model...{exception}") | |
exit() | |
print("Model loaded.") | |
return model_norm | |
def get_vector_store(): | |
db_name = "helm" | |
connection_string = "postgresql://adrian@localhost:5432/postgres" | |
url = make_url(connection_string) | |
vector_store = PGVectorStore.from_params( | |
database=db_name, | |
host=url.host, | |
password=url.password, | |
port=url.port, | |
user=url.username, | |
table_name="f150_manual", | |
embed_dim=384, | |
hybrid_search=True, | |
text_search_config="english", | |
) | |
return vector_store | |
def main(): | |
embed_model = get_embed_model() | |
llm = OpenAI("gpt-4") | |
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model) | |
set_global_service_context(service_context) | |
vector_store = get_vector_store() | |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store) | |
query_engine = vector_index.as_query_engine( | |
text_qa_template=PromptTemplate(QA_TEMPLATE), | |
similarity_top_k=2, | |
verbose=True) | |
# Recommended tire pressure | |
# Recommended oil | |
# Instructions on how to change a flat tire | |
# Fuel tank capacity and fuel grade | |
# How to change the keypad code. | |
while True: | |
try: | |
# Read | |
user_input = input(">>> ") | |
# Evaluate and Print | |
if user_input == 'exit': | |
break | |
else: | |
response = query_engine.query(user_input) | |
print(response) | |
except Exception as e: | |
# Handle exceptions | |
print("Error:", e) | |
if __name__ == '__main__': | |
main() |