Spaces:
Runtime error
Runtime error
Commit
·
ef4cddb
1
Parent(s):
99dc8a3
this works haha
Browse files- app.py +103 -2
- requirements.txt +5 -0
app.py
CHANGED
|
@@ -1,4 +1,105 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
x = st.slider('Select a value')
|
| 4 |
-
st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertTokenizer, AlbertModel
|
| 5 |
+
import pytorch_lightning as pl
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def download_torch_model():
|
| 10 |
+
model_path = hf_hub_download(repo_id="adrianmoses/hate-speech-detection", filename="pytorch_hs_model.net")
|
| 11 |
+
print(model_path)
|
| 12 |
+
return model_path
|
| 13 |
+
|
| 14 |
+
def load_model():
|
| 15 |
+
model = AlbertModel.from_pretrained("albert-base-v2")
|
| 16 |
+
return model
|
| 17 |
+
|
| 18 |
+
def load_tokenizer():
|
| 19 |
+
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
|
| 20 |
+
return tokenizer
|
| 21 |
+
|
| 22 |
+
def clean_tweet(tweet):
|
| 23 |
+
return re.sub(r'@\w+:?', "", tweet, flags=re.IGNORECASE)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def tokenize(tweet):
|
| 27 |
+
tweet = clean_tweet(tweet)
|
| 28 |
+
tokenizer = load_tokenizer()
|
| 29 |
+
return tokenizer(tweet, padding=True, truncation=True, max_length=64, return_tensors='pt')
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class HateSpeechClassifier(pl.LightningModule):
|
| 34 |
+
|
| 35 |
+
def __init__(self, albert_model, dropout, hidden_dim, output_dim):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.model = albert_model
|
| 38 |
+
self.l1 = torch.nn.Linear(hidden_dim, hidden_dim)
|
| 39 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 40 |
+
self.l2 = torch.nn.Linear(hidden_dim, output_dim)
|
| 41 |
+
self.loss = torch.nn.NLLLoss()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 46 |
+
x = self.model(input_ids,
|
| 47 |
+
attention_mask=attention_mask,
|
| 48 |
+
token_type_ids=token_type_ids)[0]
|
| 49 |
+
x = x[:, 0]
|
| 50 |
+
x = self.dropout(torch.relu(self.l1(x)))
|
| 51 |
+
return torch.log_softmax(self.l2(x), dim=1)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def training_step(self, batch, batch_idx):
|
| 55 |
+
input_ids, attention_masks, token_type_ids, y = batch
|
| 56 |
+
y_hat = self(input_ids, attention_masks, token_type_ids)
|
| 57 |
+
loss = self.loss(y_hat, y.view(-1))
|
| 58 |
+
return loss
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def validation_step(self, batch, batch_idx):
|
| 62 |
+
input_ids, attention_masks, token_type_ids, y = batch
|
| 63 |
+
y_hat = self(input_ids, attention_masks, token_type_ids)
|
| 64 |
+
loss = self.loss(y_hat, y.view(-1))
|
| 65 |
+
return loss
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def configure_optimizers(self):
|
| 69 |
+
return torch.optim.Adam(self.parameters(), lr=1e-5)
|
| 70 |
+
|
| 71 |
+
def setup_model():
|
| 72 |
+
torch_model_path = download_torch_model()
|
| 73 |
+
albert_model = load_model()
|
| 74 |
+
model = HateSpeechClassifier(albert_model, 0.5, 768, 2)
|
| 75 |
+
model.load_state_dict(torch.load(torch_model_path, map_location=torch.device('cpu')))
|
| 76 |
+
model.eval()
|
| 77 |
+
return model
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
model = setup_model()
|
| 81 |
+
|
| 82 |
+
st.title("Hate Speech Detection")
|
| 83 |
+
st.title("Text will be truncated to 64 tokens")
|
| 84 |
+
|
| 85 |
+
text = st.text_input("Enter text")
|
| 86 |
+
|
| 87 |
+
encoded_input = tokenize(text)
|
| 88 |
+
|
| 89 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 90 |
+
input_ids = encoded_input['input_ids']
|
| 91 |
+
attention_mask = encoded_input['attention_mask']
|
| 92 |
+
token_type_ids = encoded_input['token_type_ids']
|
| 93 |
+
|
| 94 |
+
pred = model(input_ids, attention_mask, token_type_ids)
|
| 95 |
+
print(pred)
|
| 96 |
+
print(pred.data.max(1))
|
| 97 |
+
label = pred.data.max(1)[1]
|
| 98 |
+
|
| 99 |
+
print(label)
|
| 100 |
+
is_hate_speech = "YES" if label == 1 else "NO"
|
| 101 |
+
|
| 102 |
+
st.write(f"Is this hate speech?: {is_hate_speech}")
|
| 103 |
+
|
| 104 |
+
|
| 105 |
|
|
|
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.12.3
|
| 2 |
+
SentencePiece
|
| 3 |
+
torch
|
| 4 |
+
pytorch-lightning==1.5.0
|
| 5 |
+
huggingface-hub
|