Spaces:
Runtime error
Runtime error
adrianmoses
commited on
Commit
•
ef4cddb
1
Parent(s):
99dc8a3
this works haha
Browse files- app.py +103 -2
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,4 +1,105 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
1 |
import streamlit as st
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
|
9 |
+
def download_torch_model():
|
10 |
+
model_path = hf_hub_download(repo_id="adrianmoses/hate-speech-detection", filename="pytorch_hs_model.net")
|
11 |
+
print(model_path)
|
12 |
+
return model_path
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
model = AlbertModel.from_pretrained("albert-base-v2")
|
16 |
+
return model
|
17 |
+
|
18 |
+
def load_tokenizer():
|
19 |
+
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
|
20 |
+
return tokenizer
|
21 |
+
|
22 |
+
def clean_tweet(tweet):
|
23 |
+
return re.sub(r'@\w+:?', "", tweet, flags=re.IGNORECASE)
|
24 |
+
|
25 |
+
|
26 |
+
def tokenize(tweet):
|
27 |
+
tweet = clean_tweet(tweet)
|
28 |
+
tokenizer = load_tokenizer()
|
29 |
+
return tokenizer(tweet, padding=True, truncation=True, max_length=64, return_tensors='pt')
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
class HateSpeechClassifier(pl.LightningModule):
|
34 |
+
|
35 |
+
def __init__(self, albert_model, dropout, hidden_dim, output_dim):
|
36 |
+
super().__init__()
|
37 |
+
self.model = albert_model
|
38 |
+
self.l1 = torch.nn.Linear(hidden_dim, hidden_dim)
|
39 |
+
self.dropout = torch.nn.Dropout(dropout)
|
40 |
+
self.l2 = torch.nn.Linear(hidden_dim, output_dim)
|
41 |
+
self.loss = torch.nn.NLLLoss()
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
46 |
+
x = self.model(input_ids,
|
47 |
+
attention_mask=attention_mask,
|
48 |
+
token_type_ids=token_type_ids)[0]
|
49 |
+
x = x[:, 0]
|
50 |
+
x = self.dropout(torch.relu(self.l1(x)))
|
51 |
+
return torch.log_softmax(self.l2(x), dim=1)
|
52 |
+
|
53 |
+
|
54 |
+
def training_step(self, batch, batch_idx):
|
55 |
+
input_ids, attention_masks, token_type_ids, y = batch
|
56 |
+
y_hat = self(input_ids, attention_masks, token_type_ids)
|
57 |
+
loss = self.loss(y_hat, y.view(-1))
|
58 |
+
return loss
|
59 |
+
|
60 |
+
|
61 |
+
def validation_step(self, batch, batch_idx):
|
62 |
+
input_ids, attention_masks, token_type_ids, y = batch
|
63 |
+
y_hat = self(input_ids, attention_masks, token_type_ids)
|
64 |
+
loss = self.loss(y_hat, y.view(-1))
|
65 |
+
return loss
|
66 |
+
|
67 |
+
|
68 |
+
def configure_optimizers(self):
|
69 |
+
return torch.optim.Adam(self.parameters(), lr=1e-5)
|
70 |
+
|
71 |
+
def setup_model():
|
72 |
+
torch_model_path = download_torch_model()
|
73 |
+
albert_model = load_model()
|
74 |
+
model = HateSpeechClassifier(albert_model, 0.5, 768, 2)
|
75 |
+
model.load_state_dict(torch.load(torch_model_path, map_location=torch.device('cpu')))
|
76 |
+
model.eval()
|
77 |
+
return model
|
78 |
+
|
79 |
+
|
80 |
+
model = setup_model()
|
81 |
+
|
82 |
+
st.title("Hate Speech Detection")
|
83 |
+
st.title("Text will be truncated to 64 tokens")
|
84 |
+
|
85 |
+
text = st.text_input("Enter text")
|
86 |
+
|
87 |
+
encoded_input = tokenize(text)
|
88 |
+
|
89 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
90 |
+
input_ids = encoded_input['input_ids']
|
91 |
+
attention_mask = encoded_input['attention_mask']
|
92 |
+
token_type_ids = encoded_input['token_type_ids']
|
93 |
+
|
94 |
+
pred = model(input_ids, attention_mask, token_type_ids)
|
95 |
+
print(pred)
|
96 |
+
print(pred.data.max(1))
|
97 |
+
label = pred.data.max(1)[1]
|
98 |
+
|
99 |
+
print(label)
|
100 |
+
is_hate_speech = "YES" if label == 1 else "NO"
|
101 |
+
|
102 |
+
st.write(f"Is this hate speech?: {is_hate_speech}")
|
103 |
+
|
104 |
+
|
105 |
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.12.3
|
2 |
+
SentencePiece
|
3 |
+
torch
|
4 |
+
pytorch-lightning==1.5.0
|
5 |
+
huggingface-hub
|