Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,11 @@ import json
|
|
4 |
import numpy as np
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -11,27 +16,42 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
11 |
|
12 |
# Load embeddings from a JSON file
|
13 |
def load_embeddings(file_path):
|
|
|
14 |
with open(file_path, 'r', encoding='utf-8') as file:
|
15 |
-
|
|
|
|
|
16 |
|
17 |
# Function to get relevant articles based on user query
|
18 |
def get_relevant_documents(query, embeddings_data, model, top_k=3):
|
|
|
|
|
|
|
19 |
query_embedding = model.encode(query)
|
20 |
similarities = []
|
21 |
|
22 |
-
for entry in embeddings_data:
|
23 |
embedding = np.array(entry['embedding'])
|
24 |
similarity = cosine_similarity([query_embedding], [embedding])[0][0]
|
25 |
similarities.append((entry, similarity))
|
|
|
|
|
26 |
|
27 |
-
|
28 |
similarities.sort(key=lambda x: x[1], reverse=True)
|
29 |
top_entries = [entry for entry, _ in similarities[:top_k]]
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return top_entries
|
32 |
|
33 |
# Function to format relevant documents into a string
|
34 |
def format_documents(documents):
|
|
|
35 |
formatted = ""
|
36 |
for doc in documents:
|
37 |
formatted += f"Relevant article: {doc['name']}\n{doc['content']}\n\n"
|
@@ -48,12 +68,21 @@ def respond(
|
|
48 |
embeddings_data,
|
49 |
model
|
50 |
):
|
|
|
|
|
|
|
|
|
51 |
# Search for relevant documents based on user input
|
52 |
relevant_docs = get_relevant_documents(message, embeddings_data, model)
|
53 |
retrieved_context = format_documents(relevant_docs)
|
54 |
|
|
|
|
|
|
|
|
|
55 |
# Add the retrieved context as part of the system message
|
56 |
system_message_with_context = system_message + "\n\n" + "Relevant documents:\n" + retrieved_context
|
|
|
57 |
|
58 |
messages = [{"role": "system", "content": system_message_with_context}]
|
59 |
|
@@ -64,10 +93,12 @@ def respond(
|
|
64 |
messages.append({"role": "assistant", "content": val[1]})
|
65 |
|
66 |
messages.append({"role": "user", "content": message})
|
|
|
67 |
|
68 |
response = ""
|
69 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
70 |
|
|
|
71 |
for message in client.chat_completion(
|
72 |
messages,
|
73 |
max_tokens=max_tokens,
|
@@ -78,11 +109,17 @@ def respond(
|
|
78 |
token = message.choices[0].delta.content
|
79 |
response += token
|
80 |
yield response
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Load embeddings and model once at startup
|
83 |
embeddings_file = 'Code Civil vectorised.json'
|
|
|
84 |
embeddings_data = load_embeddings(embeddings_file)
|
85 |
-
embedding_model = SentenceTransformer('Lajavaness/bilingual-embedding-small'
|
|
|
86 |
|
87 |
# Gradio interface
|
88 |
demo = gr.ChatInterface(
|
@@ -104,4 +141,5 @@ demo = gr.ChatInterface(
|
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
107 |
demo.launch()
|
|
|
4 |
import numpy as np
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
import logging
|
8 |
+
import time
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
|
13 |
"""
|
14 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
16 |
|
17 |
# Load embeddings from a JSON file
|
18 |
def load_embeddings(file_path):
|
19 |
+
logging.info(f"Loading embeddings from {file_path}")
|
20 |
with open(file_path, 'r', encoding='utf-8') as file:
|
21 |
+
embeddings = json.load(file)
|
22 |
+
logging.info(f"Loaded {len(embeddings)} embeddings")
|
23 |
+
return embeddings
|
24 |
|
25 |
# Function to get relevant articles based on user query
|
26 |
def get_relevant_documents(query, embeddings_data, model, top_k=3):
|
27 |
+
logging.info(f"Received query: {query}")
|
28 |
+
start_time = time.time()
|
29 |
+
|
30 |
query_embedding = model.encode(query)
|
31 |
similarities = []
|
32 |
|
33 |
+
for i, entry in enumerate(embeddings_data):
|
34 |
embedding = np.array(entry['embedding'])
|
35 |
similarity = cosine_similarity([query_embedding], [embedding])[0][0]
|
36 |
similarities.append((entry, similarity))
|
37 |
+
if i % 100 == 0: # Log every 100 iterations
|
38 |
+
logging.debug(f"Processed {i} embeddings")
|
39 |
|
40 |
+
logging.info("Sorting similarities")
|
41 |
similarities.sort(key=lambda x: x[1], reverse=True)
|
42 |
top_entries = [entry for entry, _ in similarities[:top_k]]
|
43 |
|
44 |
+
end_time = time.time()
|
45 |
+
duration = end_time - start_time
|
46 |
+
|
47 |
+
logging.info(f"Query processed in {duration:.2f} seconds")
|
48 |
+
logging.info(f"Top {top_k} documents returned with similarities: {[sim[1] for sim in similarities[:top_k]]}")
|
49 |
+
|
50 |
return top_entries
|
51 |
|
52 |
# Function to format relevant documents into a string
|
53 |
def format_documents(documents):
|
54 |
+
logging.info(f"Formatting {len(documents)} documents")
|
55 |
formatted = ""
|
56 |
for doc in documents:
|
57 |
formatted += f"Relevant article: {doc['name']}\n{doc['content']}\n\n"
|
|
|
68 |
embeddings_data,
|
69 |
model
|
70 |
):
|
71 |
+
logging.info(f"New user query: {message}")
|
72 |
+
|
73 |
+
start_time = time.time()
|
74 |
+
|
75 |
# Search for relevant documents based on user input
|
76 |
relevant_docs = get_relevant_documents(message, embeddings_data, model)
|
77 |
retrieved_context = format_documents(relevant_docs)
|
78 |
|
79 |
+
# Log the statistics about the retrieved documents
|
80 |
+
logging.info(f"Total documents retrieved: {len(relevant_docs)}")
|
81 |
+
logging.info(f"Documents: " + {[doc['name'] for doc in relevant_docs]})
|
82 |
+
|
83 |
# Add the retrieved context as part of the system message
|
84 |
system_message_with_context = system_message + "\n\n" + "Relevant documents:\n" + retrieved_context
|
85 |
+
logging.info("System message updated with retrieved context")
|
86 |
|
87 |
messages = [{"role": "system", "content": system_message_with_context}]
|
88 |
|
|
|
93 |
messages.append({"role": "assistant", "content": val[1]})
|
94 |
|
95 |
messages.append({"role": "user", "content": message})
|
96 |
+
logging.info("Messages prepared for InferenceClient")
|
97 |
|
98 |
response = ""
|
99 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
100 |
|
101 |
+
logging.info("Sending request to InferenceClient")
|
102 |
for message in client.chat_completion(
|
103 |
messages,
|
104 |
max_tokens=max_tokens,
|
|
|
109 |
token = message.choices[0].delta.content
|
110 |
response += token
|
111 |
yield response
|
112 |
+
|
113 |
+
end_time = time.time()
|
114 |
+
total_duration = end_time - start_time
|
115 |
+
logging.info(f"Response generated in {total_duration:.2f} seconds")
|
116 |
|
117 |
# Load embeddings and model once at startup
|
118 |
embeddings_file = 'Code Civil vectorised.json'
|
119 |
+
logging.info("Starting application, loading embeddings and model")
|
120 |
embeddings_data = load_embeddings(embeddings_file)
|
121 |
+
embedding_model = SentenceTransformer('Lajavaness/bilingual-embedding-small')
|
122 |
+
logging.info("Model and embeddings loaded successfully")
|
123 |
|
124 |
# Gradio interface
|
125 |
demo = gr.ChatInterface(
|
|
|
141 |
)
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
+
logging.info("Launching Gradio app")
|
145 |
demo.launch()
|