File size: 3,104 Bytes
290fe43
0b127e2
 
 
 
ae78019
b0bed84
e4975d5
0b127e2
 
 
b0bed84
0b127e2
 
 
 
 
 
 
 
b0bed84
0b127e2
b0bed84
 
 
 
 
 
 
0b127e2
 
 
 
b0bed84
0b127e2
 
b0bed84
0b127e2
 
b0bed84
 
0b127e2
b0bed84
 
 
 
 
 
0b127e2
 
 
 
b0bed84
0b127e2
 
 
 
b0bed84
 
0b127e2
b0bed84
 
 
0b127e2
 
 
b0bed84
 
0b127e2
 
 
b0bed84
 
 
 
 
 
 
 
0b127e2
 
b0bed84
0b127e2
b0bed84
0b127e2
 
 
 
b0bed84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
!pip install Groq
import os
from groq import Groq
import gradio as gr
import logging

os.environ["GROQ_API_KEY"] = "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"

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Initialize the Groq client
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
    logger.error("GROQ_API_KEY environment variable is not set.")
    raise ValueError("GROQ_API_KEY environment variable is required.")
client = Groq(api_key=api_key)

MODEL_NAME = os.environ.get("MODEL_NAME", "llama3-8b-8192")

# Define a function to handle chat completions
def get_completion(user_input):
    if not user_input.strip():
        return "Please enter a valid query."
    
    # Check if the user asks "Who made you?"
    if "who made you" in user_input.lower():
        return "I was created by Thirumoorthi, a brilliant mind working on AI systems!"
    
    try:
        completion = client.chat.completions.create(
            model=MODEL_NAME,
            messages=[
                {"role": "system", "content": "You are a friendly and helpful assistant, like ChatGPT."},
                {"role": "user", "content": user_input}
            ],
            temperature=0.7,  # Slightly lower temperature for more controlled responses
            max_tokens=1024,
            top_p=1,
            stream=True,
            stop=None,
        )
        
        response = ""
        for chunk in completion:
            response += chunk.choices[0].delta.content or ""
        
        return response.strip()  # Clean up response
    except Exception as e:
        logger.error(f"Error during completion: {e}")
        return "Sorry, I encountered an error while processing your request."

# Launch Gradio interface
def launch_interface():
    demo = gr.Interface(
        fn=get_completion,
        inputs=gr.Textbox(
            label="Ask me anything:",
            placeholder="I am here to help! Ask away...",
            lines=2,
            max_lines=5,
            show_label=True,
            interactive=True
        ),
        outputs=gr.Textbox(
            label="Response:",
            interactive=False,
            show_label=True,
            lines=6,
            max_lines=10
        ),
        title="Chat with Mr AI",
        description="I am your friendly assistant, just like ChatGPT! Ask me anything, and I will do my best to help.",
        theme="huggingface",  # More modern theme
        css="""
            .gr-box { border-radius: 15px; border: 1px solid #e1e1e1; padding: 20px; background-color: #f9f9f9; }
            .gr-button { background-color: #4CAF50; color: white; font-size: 14px; }
            .gr-textbox { border-radius: 8px; font-size: 16px; padding: 10px; }
            .gr-output { background-color: #f1f1f1; border-radius: 8px; font-size: 16px; padding: 15px; }
        """,
        allow_flagging="never",
        live=True,  # Enable live updates if supported
    )
    
    logger.info("Starting Gradio interface")
    demo.launch(share=True)

if __name__ == "__main__":
    launch_interface()