Spaces:
Runtime error
Runtime error
File size: 4,655 Bytes
09325d6 506041d 09325d6 506041d 648720f 09325d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
# import os
# import sys
# from pathlib import Path
import time
models =[
"XLabs-AI/flux-RealismLora",
"adirik/flux-cinestill",
"VideoAditor/Flux-Lora-Realism",
"black-forest-labs/FLUX.1-schnell",
"mann-e/Mann-E_Turbo",
"nerijs/dark-fantasy-movie-flux",
"alvdansen/flux-koda",
"black-forest-labs/FLUX.1-dev",
"SG161222/RealVisXL_V4.0",
"ostris/OpenFLUX"
•
Updated 3 days ago
•
4.73k
•
283
]
model_functions = {}
model_idx = 1
for model_path in models:
try:
model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False)
except Exception as error:
def the_fn(txt):
return None
model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"])
model_idx+=1
def send_it_idx(idx):
def send_it_fn(prompt):
output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt)
return output
return send_it_fn
def get_prompts(prompt_text):
return prompt_text
def clear_it(val):
if int(val) != 0:
val = 0
else:
val = 0
pass
return val
def all_task_end(cnt,t_stamp):
to = t_stamp + 360
et = time.time()
if et > to and t_stamp != 0:
d = gr.update(value=0)
tog = gr.update(value=1)
#print(f'to: {to} et: {et}')
else:
if cnt != 0:
d = gr.update(value=et)
else:
d = gr.update(value=0)
tog = gr.update(value=0)
#print (f'passing: to: {to} et: {et}')
pass
return d, tog
def all_task_start():
print("\n\n\n\n\n\n\n")
t = time.gmtime()
t_stamp = time.time()
current_time = time.strftime("%H:%M:%S", t)
return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0)
def clear_fn():
nn = len(models)
return tuple([None, *[None for _ in range(nn)]])
with gr.Blocks(title="SD Models") as my_interface:
with gr.Column(scale=12):
# with gr.Row():
# gr.Markdown("""- Primary prompt: 你想画的内容(英文单词,如 a cat, 加英文逗号效果更好;点 Improve 按钮进行完善)\n- Real prompt: 完善后的提示词,出现后再点右边的 Run 按钮开始运行""")
with gr.Row():
with gr.Row(scale=6):
primary_prompt=gr.Textbox(label="Prompt", value="")
# real_prompt=gr.Textbox(label="Real prompt")
with gr.Row(scale=6):
# improve_prompts_btn=gr.Button("Improve")
with gr.Row():
run=gr.Button("Run",variant="primary")
clear_btn=gr.Button("Clear")
with gr.Row():
sd_outputs = {}
model_idx = 1
for model_path in models:
with gr.Column(scale=3, min_width=320):
with gr.Box():
sd_outputs[model_idx] = gr.Image(label=model_path)
pass
model_idx += 1
pass
pass
with gr.Row(visible=False):
start_box=gr.Number(interactive=False)
end_box=gr.Number(interactive=False)
tog_box=gr.Textbox(value=0,interactive=False)
start_box.change(
all_task_end,
[start_box, end_box],
[start_box, tog_box],
every=1,
show_progress=True)
primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box])
run.click(all_task_start, None, [start_box, end_box, tog_box])
runs_dict = {}
model_idx = 1
for model_path in models:
runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]])
model_idx += 1
pass
pass
# improve_prompts_btn_clicked=improve_prompts_btn.click(
# get_prompts,
# inputs=[primary_prompt],
# outputs=[primary_prompt],
# cancels=list(runs_dict.values()))
clear_btn.click(
clear_fn,
None,
[primary_prompt, *list(sd_outputs.values())],
cancels=[*list(runs_dict.values())])
tog_box.change(
clear_it,
tog_box,
tog_box,
cancels=[*list(runs_dict.values())])
text_gen1=gr.Interface.load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion")
my_interface.queue(concurrency_count=600, status_update_rate=1)
my_interface.launch(inline=True, show_api=True) |