AskMyPDF / app.py
agoyal496's picture
Documentation
24412da
raw
history blame
3.17 kB
import gradio as gr
import os
from utils.document_parsing import DocParsing
from utils.retrieval import Retrieval
from utils.llm_generation import LLMGeneration
import json
embedding_model_name = "sentence-transformers/all-MiniLM-L6-v2"
# Setting up Retriever
retriever = Retrieval(model_name=embedding_model_name)
llm_model_name = "gpt-4o-mini"
# Settting up LLMGenerator
llm_generator = None
def set_api_key(api_key: str) -> None:
"""
Sets the OpenAI API key as an environment variable.
Parameters:
api_key (str): The OpenAI API key to be set.
Returns:
None: This function does not return any value.
Raises:
gr.Error: If the provided API key is empty or consists only of whitespace characters.
"""
if api_key.strip():
os.environ["OPENAI_API_KEY"] = api_key
else:
raise gr.Error("Please provide a valid API key")
def process_inputs(api_key: str, pdf_file, questions: str) -> str:
"""
This function processes the inputs, sets up the API key, validates the PDF file, parses the PDF,
creates a vector store, generates an LLM generator, validates the questions, retrieves top similar chunks,
generates answers, and returns the output in JSON format.
Parameters:
api_key (str): The OpenAI API key for accessing the LLM model.
pdf_file (File): The uploaded PDF file.
questions (str): The list of questions, one per line.
Returns:
str: The output in JSON format containing the answers to the questions.
"""
# Setup Api KEY
set_api_key(api_key)
if pdf_file is None:
raise gr.Error("Please upload a pdf file")
# Parsing the pdf
doc_handler = DocParsing(file_path=pdf_file.name, model_name=embedding_model_name)
docs = doc_handler.process_pdf()
# Create vector store
retriever.create_vector_store(chunks=docs)
# LLM Generator
llm_generator = LLMGeneration(llm_model_name=llm_model_name)
if not questions.strip():
raise gr.Error("Please provide valid set of questions")
output_dict = {}
questions_list = questions.strip().split("\n")
for question in questions_list:
# Retrieve top similar chunks
similar_chunks = retriever.search(query=question, k=10)
# Generate the answer
output_dict[question] = llm_generator.generate_answer(question, similar_chunks)
response = json.dumps(output_dict, indent=4)
return response
with gr.Blocks() as demo:
gr.Markdown("# AskMYPDF Q&A App")
gr.Markdown(
"Enter your OPENAI API key, upload a PDF, and list your questions below."
)
api_key_input = gr.Textbox(label="API Key", type="password")
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
questions_input = gr.Textbox(
label="List of Questions (one per line)",
lines=5,
placeholder="Question 1\nQuestion 2\n...",
)
submit_button = gr.Button("Submit")
output = gr.Textbox(label="Output")
submit_button.click(
fn=process_inputs,
inputs=[api_key_input, pdf_input, questions_input],
outputs=output,
)
if __name__ == "__main__":
demo.launch()