AskMyPDF / utils /retrieval.py
agoyal496's picture
Documentation
24412da
raw
history blame
1.32 kB
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from typing import List
class Retrieval:
def __init__(self, model_name, max_model_tokens=384):
"""
Initialize Retrieval class with HuggingFace embeddings and FAISS vector store.
Parameters:
model_name (str): The name of the HuggingFace model to use for embeddings.
max_model_tokens (int, optional): The maximum number of tokens to use for encoding. Defaults to 384.
Returns:
None
"""
self.model_name = model_name
self.embeddings = HuggingFaceEmbeddings(
model_name=model_name,
encode_kwargs={"max_length": max_model_tokens, "truncation": True},
)
def create_vector_store(self, chunks: List[Document]):
"""Creates a new vector store for similarity search"""
self.chunks = chunks
# Create FAISS vector store
self.vectorstore = FAISS.from_documents(self.chunks, self.embeddings)
def search(self, query, k=10) -> List[Document]:
"""Search top matching documents"""
# Retrieve top 10 similar chunks
similar_docs = self.vectorstore.similarity_search(query, k)
return similar_docs