|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.schema import Document |
|
from typing import List |
|
|
|
class Retrieval: |
|
def __init__(self, model_name): |
|
self.model_name = model_name |
|
self.embeddings = HuggingFaceEmbeddings(model_name=model_name) |
|
|
|
|
|
def create_vector_store(self, chunks: List[Document]): |
|
|
|
self.chunks = chunks |
|
|
|
self.vectorstore = FAISS.from_documents(self.chunks, self.embeddings) |
|
|
|
def search(self,query, k=10) -> List[Document]: |
|
|
|
similar_docs = self.vectorstore.similarity_search(query, k) |
|
|
|
return similar_docs |