Added doc parsing
Browse files- utils/document_parsing.py +56 -0
utils/document_parsing.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import PyPDFLoader
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.schema import Document
|
5 |
+
|
6 |
+
|
7 |
+
class DocParsing:
|
8 |
+
|
9 |
+
chunk_size = 350
|
10 |
+
chunk_overlap = 50
|
11 |
+
|
12 |
+
def __init__(self, file_path, model_name, max_model_tokens=384):
|
13 |
+
self.file_path = file_path
|
14 |
+
|
15 |
+
# Initialize the tokenizer for all-MiniLM
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
self.max_model_tokens = max_model_tokens
|
19 |
+
|
20 |
+
def process_pdf(self):
|
21 |
+
self.load_pdf()
|
22 |
+
self.create_chunks()
|
23 |
+
return self.chunks
|
24 |
+
|
25 |
+
def load_pdf(self):
|
26 |
+
loader = PyPDFLoader(self.file_path)
|
27 |
+
self.documents = loader.load()
|
28 |
+
|
29 |
+
def create_chunks(self):
|
30 |
+
# Split documents into chunks
|
31 |
+
self.chunks = []
|
32 |
+
for doc in self.documents:
|
33 |
+
self.chunks.extend(
|
34 |
+
self.token_split_document(
|
35 |
+
doc, chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
|
36 |
+
)
|
37 |
+
)
|
38 |
+
|
39 |
+
def tokenize(self, text):
|
40 |
+
return self.tokenizer.encode(text, add_special_tokens=False)
|
41 |
+
|
42 |
+
def token_split_document(self, doc: Document, chunk_size=350, chunk_overlap=50):
|
43 |
+
"""Split a single Document into multiple Documents based on token length."""
|
44 |
+
tokens = self.tokenize(doc.page_content)
|
45 |
+
chunks = []
|
46 |
+
start = 0
|
47 |
+
while start < len(tokens):
|
48 |
+
end = min(start + chunk_size, len(tokens))
|
49 |
+
chunk_tokens = tokens[start:end]
|
50 |
+
chunk_text = self.tokenizer.decode(chunk_tokens)
|
51 |
+
# Create a new Document with the same metadata but truncated text
|
52 |
+
chunk_doc = Document(page_content=chunk_text, metadata=doc.metadata)
|
53 |
+
chunks.append(chunk_doc)
|
54 |
+
# Move start forward by chunk_size - chunk_overlap for overlapping context
|
55 |
+
start += chunk_size - chunk_overlap
|
56 |
+
return chunks
|