agshubhi's picture
Update app.py
e15de7b verified
raw
history blame
319 Bytes
# import streamlit as st
# from transformers import pipeline
# pipe =pipeline('sentiment-analysis')
# text=st.text_area('enter customer feedback')
# if text:
# out =pipe(text)
# st.json(out)
from bertopic import BERTopic
topic_model = BERTopic.load("MaartenGr/BERTopic_Wikipedia")
topic_model.get_topic_info()