import numpy as np | |
import torch | |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN | |
def carga_modelo(model_name="ceyda/butterfly_cropped_uniq1K_512", model_version=None): | |
gan = LightweightGAN.from_pretrained(model_name, version=model_version) | |
gan.eval() | |
return gan | |
def genera(gan,batch_size=1): | |
with torch.no_grad(): | |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255 | |
ims = ims.permute(0,2,3,1).deatch().cpu().numpy().astype(np.uint8) | |
return ims | |