image_to_video / mmaudio /ext /stft_converter_mel.py
Rex Cheng
initial commit
dbac20f
raw
history blame
7.73 kB
# Reference: # https://github.com/bytedance/Make-An-Audio-2
import torch
import torch.nn as nn
import torchaudio
from einops import rearrange
from librosa.filters import mel as librosa_mel_fn
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10):
return norm_fn(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes, norm_fn):
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
return output
class STFTConverter(nn.Module):
def __init__(
self,
*,
sampling_rate: float = 16_000,
n_fft: int = 1024,
num_mels: int = 128,
hop_size: int = 256,
win_size: int = 1024,
fmin: float = 0,
fmax: float = 8_000,
norm_fn=torch.log,
):
super().__init__()
self.sampling_rate = sampling_rate
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.norm_fn = norm_fn
mel = librosa_mel_fn(sr=self.sampling_rate,
n_fft=self.n_fft,
n_mels=self.num_mels,
fmin=self.fmin,
fmax=self.fmax)
mel_basis = torch.from_numpy(mel).float()
hann_window = torch.hann_window(self.win_size)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
@property
def device(self):
return self.hann_window.device
def forward(self, waveform: torch.Tensor) -> torch.Tensor:
# input: batch_size * length
bs = waveform.shape[0]
waveform = waveform.clamp(min=-1., max=1.)
spec = torch.stft(waveform,
self.n_fft,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
# print('After stft', spec.shape, spec.min(), spec.max(), spec.mean())
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power 1', power.shape, power.min(), power.max(), power.mean())
print('angle 1', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(),
# self.mel_basis.mean())
# spec = self.mel_transform(spec)
# power = torch.matmul(self.mel_basis, power)
spec = rearrange(spec, 'b f t c -> (b c) f t')
spec = self.mel_basis.unsqueeze(0) @ spec
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs)
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power', power.shape, power.min(), power.max(), power.mean())
print('angle', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# print('After mel', spec.shape, spec.min(), spec.max(), spec.mean())
# spec = spectral_normalize_torch(spec, self.norm_fn)
# print('After norm', spec.shape, spec.min(), spec.max(), spec.mean())
# compute magnitude
# magnitude = torch.sqrt((spec**2).sum(-1))
# normalize by magnitude
# scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10
# spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1)
# power = torch.log10(power.clamp(min=1e-5)) * 10
power = torch.log10(power.clamp(min=1e-8))
print('After scaling', power.shape, power.min(), power.max(), power.mean())
# spec = torch.stack([power, angle], dim=-1)
# spec = rearrange(spec, '(b c) f t -> b c f t', b=bs)
# spec = rearrange(spec, 'b f t c -> b c f t', b=bs)
# spec[:, :, 400:] = 0
return power, angle
# return spec[..., 0], spec[..., 1]
def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor:
power, angle = spec
bs = power.shape[0]
# spec = rearrange(spec, 'b c f t -> (b c) f t')
# print(spec.shape, self.mel_basis.shape)
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
# spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec
# spec = self.invmel_transform(spec)
# spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous()
# spec[..., 0] = 10**(spec[..., 0] / 10)
# power = spec[..., 0]
power = 10**power
# print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(),
# spec[..., 0].mean())
unit_vector = torch.stack([
torch.cos(angle),
torch.sin(angle),
], dim=-1)
spec = power.unsqueeze(-1) * unit_vector
# power = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), power).solution
spec = rearrange(spec, 'b f t c -> (b c) f t')
spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec
# spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
power = (spec.pow(2).sum(-1))**(0.5)
angle = torch.atan2(spec[..., 1], spec[..., 0])
print('power 2', power.shape, power.min(), power.max(), power.mean())
print('angle 2', angle.shape, angle.min(), angle.max(), angle.mean(), angle[:, :2, :2])
# spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
spec = torch.view_as_complex(spec)
waveform = torch.istft(
spec,
self.n_fft,
length=length,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=True,
normalized=False,
onesided=True,
return_complex=False,
)
return waveform
if __name__ == '__main__':
converter = STFTConverter(sampling_rate=16000)
signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0]
# resample signal at 44100 Hz
# signal = torchaudio.transforms.Resample(16_000, 44_100)(signal)
L = signal.shape[1]
print('Input signal', signal.shape)
spec = converter(signal)
power, angle = spec
# print(power.shape, angle.shape)
# print(power, power.min(), power.max(), power.mean())
# power = power.clamp(-1, 1)
# angle = angle.clamp(-1, 1)
import matplotlib.pyplot as plt
# Visualize power
plt.figure()
plt.imshow(power[0].detach().numpy(), aspect='auto', origin='lower')
plt.colorbar()
plt.title('Power')
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.savefig('./output/power.png')
# Visualize angle
plt.figure()
plt.imshow(angle[0].detach().numpy(), aspect='auto', origin='lower')
plt.colorbar()
plt.title('Angle')
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.savefig('./output/angle.png')
# print('Final spec', spec.shape)
signal_recon = converter.invert(spec, length=L)
print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(),
signal_recon.mean())
print('MSE', torch.nn.functional.mse_loss(signal, signal_recon))
torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000)