image_to_video / mmaudio /model /utils /features_utils.py
Rex Cheng
speed up inference
164c335
raw
history blame
6.31 kB
from typing import Literal, Optional
import open_clip
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from open_clip import create_model_from_pretrained
from torchvision.transforms import Normalize
from mmaudio.ext.autoencoder import AutoEncoderModule
from mmaudio.ext.mel_converter import MelConverter
from mmaudio.ext.synchformer import Synchformer
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
def patch_clip(clip_model):
# a hack to make it output last hidden states
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
def new_encode_text(self, text, normalize: bool = False):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = self.transformer(x, attn_mask=self.attn_mask)
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
return F.normalize(x, dim=-1) if normalize else x
clip_model.encode_text = new_encode_text.__get__(clip_model)
return clip_model
class FeaturesUtils(nn.Module):
def __init__(
self,
*,
tod_vae_ckpt: Optional[str] = None,
bigvgan_vocoder_ckpt: Optional[str] = None,
synchformer_ckpt: Optional[str] = None,
enable_conditions: bool = True,
mode=Literal['16k', '44k'],
need_vae_encoder: bool = True,
):
super().__init__()
if enable_conditions:
self.clip_model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',
return_transform=False)
self.clip_preprocess = Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
self.clip_model = patch_clip(self.clip_model)
self.synchformer = Synchformer()
self.synchformer.load_state_dict(
torch.load(synchformer_ckpt, weights_only=True, map_location='cpu'))
self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu') # same as 'ViT-H-14'
else:
self.clip_model = None
self.synchformer = None
self.tokenizer = None
if tod_vae_ckpt is not None:
self.tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt,
vocoder_ckpt_path=bigvgan_vocoder_ckpt,
mode=mode,
need_vae_encoder=need_vae_encoder)
else:
self.tod = None
self.mel_converter = MelConverter()
def compile(self):
if self.clip_model is not None:
self.clip_model.encode_image = torch.compile(self.clip_model.encode_image)
self.clip_model.encode_text = torch.compile(self.clip_model.encode_text)
if self.synchformer is not None:
self.synchformer = torch.compile(self.synchformer)
self.decode = torch.compile(self.decode)
self.vocode = torch.compile(self.vocode)
def train(self, mode: bool) -> None:
return super().train(False)
@torch.inference_mode()
def encode_video_with_clip(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
assert self.clip_model is not None, 'CLIP is not loaded'
# x: (B, T, C, H, W) H/W: 384
b, t, c, h, w = x.shape
assert c == 3 and h == 384 and w == 384
x = self.clip_preprocess(x)
x = rearrange(x, 'b t c h w -> (b t) c h w')
outputs = []
if batch_size < 0:
batch_size = b * t
for i in range(0, b * t, batch_size):
outputs.append(self.clip_model.encode_image(x[i:i + batch_size], normalize=True))
x = torch.cat(outputs, dim=0)
# x = self.clip_model.encode_image(x, normalize=True)
x = rearrange(x, '(b t) d -> b t d', b=b)
return x
@torch.inference_mode()
def encode_video_with_sync(self, x: torch.Tensor, batch_size: int = -1) -> torch.Tensor:
assert self.synchformer is not None, 'Synchformer is not loaded'
# x: (B, T, C, H, W) H/W: 384
b, t, c, h, w = x.shape
assert c == 3 and h == 224 and w == 224
# partition the video
segment_size = 16
step_size = 8
num_segments = (t - segment_size) // step_size + 1
segments = []
for i in range(num_segments):
segments.append(x[:, i * step_size:i * step_size + segment_size])
x = torch.stack(segments, dim=1) # (B, S, T, C, H, W)
outputs = []
if batch_size < 0:
batch_size = b
x = rearrange(x, 'b s t c h w -> (b s) 1 t c h w')
for i in range(0, b * num_segments, batch_size):
outputs.append(self.synchformer(x[i:i + batch_size]))
x = torch.cat(outputs, dim=0)
x = rearrange(x, '(b s) 1 t d -> b (s t) d', b=b)
return x
@torch.inference_mode()
def encode_text(self, text: list[str]) -> torch.Tensor:
assert self.clip_model is not None, 'CLIP is not loaded'
assert self.tokenizer is not None, 'Tokenizer is not loaded'
# x: (B, L)
tokens = self.tokenizer(text).to(self.device)
return self.clip_model.encode_text(tokens, normalize=True)
@torch.inference_mode()
def encode_audio(self, x) -> DiagonalGaussianDistribution:
assert self.tod is not None, 'VAE is not loaded'
# x: (B * L)
mel = self.mel_converter(x)
dist = self.tod.encode(mel)
return dist
@torch.inference_mode()
def vocode(self, mel: torch.Tensor) -> torch.Tensor:
assert self.tod is not None, 'VAE is not loaded'
return self.tod.vocode(mel)
@torch.inference_mode()
def decode(self, z: torch.Tensor) -> torch.Tensor:
assert self.tod is not None, 'VAE is not loaded'
return self.tod.decode(z.transpose(1, 2))
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype