Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
from datetime import datetime
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import torchaudio
|
9 |
-
import
|
10 |
|
11 |
try:
|
12 |
import mmaudio
|
@@ -20,13 +25,7 @@ from mmaudio.model.flow_matching import FlowMatching
|
|
20 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
21 |
from mmaudio.model.sequence_config import SequenceConfig
|
22 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
23 |
-
|
24 |
-
|
25 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
26 |
-
torch.backends.cudnn.allow_tf32 = True
|
27 |
-
|
28 |
-
log = logging.getLogger()
|
29 |
-
|
30 |
device = 'cuda'
|
31 |
dtype = torch.bfloat16
|
32 |
|
@@ -35,83 +34,304 @@ model.download_if_needed()
|
|
35 |
output_dir = Path('./output/gradio')
|
36 |
|
37 |
setup_eval_logging()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
log.info(f'Loaded weights from {model.model_path}')
|
46 |
-
|
47 |
-
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
48 |
-
synchformer_ckpt=model.synchformer_ckpt,
|
49 |
-
enable_conditions=True,
|
50 |
-
mode=model.mode,
|
51 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
52 |
-
need_vae_encoder=False)
|
53 |
-
feature_utils = feature_utils.to(device, dtype).eval()
|
54 |
-
|
55 |
-
return net, feature_utils, seq_cfg
|
56 |
-
|
57 |
-
|
58 |
-
net, feature_utils, seq_cfg = get_model()
|
59 |
-
|
60 |
-
|
61 |
-
@spaces.GPU(duration=120)
|
62 |
-
@torch.inference_mode()
|
63 |
-
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
64 |
-
cfg_strength: float, duration: float):
|
65 |
-
|
66 |
-
rng = torch.Generator(device=device)
|
67 |
-
if seed >= 0:
|
68 |
-
rng.manual_seed(seed)
|
69 |
-
else:
|
70 |
-
rng.seed()
|
71 |
-
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
72 |
-
|
73 |
-
video_info = load_video(video, duration)
|
74 |
-
clip_frames = video_info.clip_frames
|
75 |
-
sync_frames = video_info.sync_frames
|
76 |
-
duration = video_info.duration_sec
|
77 |
-
clip_frames = clip_frames.unsqueeze(0)
|
78 |
-
sync_frames = sync_frames.unsqueeze(0)
|
79 |
-
seq_cfg.duration = duration
|
80 |
-
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
81 |
-
|
82 |
-
audios = generate(clip_frames,
|
83 |
-
sync_frames, [prompt],
|
84 |
-
negative_text=[negative_prompt],
|
85 |
-
feature_utils=feature_utils,
|
86 |
-
net=net,
|
87 |
-
fm=fm,
|
88 |
-
rng=rng,
|
89 |
-
cfg_strength=cfg_strength)
|
90 |
-
audio = audios.float().cpu()[0]
|
91 |
-
|
92 |
-
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
93 |
-
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
94 |
-
# output_dir.mkdir(exist_ok=True, parents=True)
|
95 |
-
# video_save_path = output_dir / f'{current_time_string}.mp4'
|
96 |
-
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
97 |
-
log.info(f'Saved video to {video_save_path}')
|
98 |
-
return video_save_path
|
99 |
-
|
100 |
-
|
101 |
-
video_to_audio_tab = gr.Interface(
|
102 |
-
fn=video_to_audio,
|
103 |
-
|
104 |
-
inputs=[
|
105 |
-
gr.Video(),
|
106 |
-
gr.Text(label='Prompt'),
|
107 |
-
gr.Text(label='Negative prompt', value='music'),
|
108 |
-
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
|
109 |
-
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
110 |
-
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
111 |
-
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
112 |
-
],
|
113 |
-
outputs='playable_video',
|
114 |
-
)
|
115 |
|
116 |
if __name__ == "__main__":
|
117 |
-
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
from datetime import datetime
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
import logging
|
7 |
+
import requests
|
8 |
+
from pathlib import Path
|
9 |
+
import cv2
|
10 |
+
from PIL import Image
|
11 |
+
import json
|
12 |
+
import spaces
|
13 |
import torchaudio
|
14 |
+
import tempfile
|
15 |
|
16 |
try:
|
17 |
import mmaudio
|
|
|
25 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
26 |
from mmaudio.model.sequence_config import SequenceConfig
|
27 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
28 |
+
# ์ค๋์ค ๋ชจ๋ธ ์ค์
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
device = 'cuda'
|
30 |
dtype = torch.bfloat16
|
31 |
|
|
|
34 |
output_dir = Path('./output/gradio')
|
35 |
|
36 |
setup_eval_logging()
|
37 |
+
net, feature_utils, seq_cfg = get_model() # get_model ํจ์๋ ์ด์ ์ ์ ๊ณต๋ ์ฝ๋ ์ฌ์ฉ
|
38 |
+
|
39 |
+
# ๋ก๊น
์ค์
|
40 |
+
logging.basicConfig(level=logging.INFO)
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
# API ์ค์
|
44 |
+
CATBOX_USER_HASH = "30f52c895fd9d9cb387eee489"
|
45 |
+
REPLICATE_API_TOKEN = os.getenv("API_KEY")
|
46 |
+
|
47 |
+
def upload_to_catbox(file_path):
|
48 |
+
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ํ์ผ ์
๋ก๋"""
|
49 |
+
try:
|
50 |
+
logger.info(f"Preparing to upload file: {file_path}")
|
51 |
+
url = "https://catbox.moe/user/api.php"
|
52 |
+
|
53 |
+
mime_types = {
|
54 |
+
'.jpg': 'image/jpeg',
|
55 |
+
'.jpeg': 'image/jpeg',
|
56 |
+
'.png': 'image/png',
|
57 |
+
'.gif': 'image/gif',
|
58 |
+
'.webp': 'image/webp',
|
59 |
+
'.jfif': 'image/jpeg'
|
60 |
+
}
|
61 |
+
|
62 |
+
file_extension = Path(file_path).suffix.lower()
|
63 |
+
|
64 |
+
if file_extension not in mime_types:
|
65 |
+
try:
|
66 |
+
img = Image.open(file_path)
|
67 |
+
if img.mode != 'RGB':
|
68 |
+
img = img.convert('RGB')
|
69 |
+
|
70 |
+
new_path = file_path.rsplit('.', 1)[0] + '.png'
|
71 |
+
img.save(new_path, 'PNG')
|
72 |
+
file_path = new_path
|
73 |
+
file_extension = '.png'
|
74 |
+
logger.info(f"Converted image to PNG: {file_path}")
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Failed to convert image: {str(e)}")
|
77 |
+
return None
|
78 |
+
|
79 |
+
files = {
|
80 |
+
'fileToUpload': (
|
81 |
+
os.path.basename(file_path),
|
82 |
+
open(file_path, 'rb'),
|
83 |
+
mime_types.get(file_extension, 'application/octet-stream')
|
84 |
+
)
|
85 |
+
}
|
86 |
+
|
87 |
+
data = {
|
88 |
+
'reqtype': 'fileupload',
|
89 |
+
'userhash': CATBOX_USER_HASH
|
90 |
+
}
|
91 |
+
|
92 |
+
response = requests.post(url, files=files, data=data)
|
93 |
+
|
94 |
+
if response.status_code == 200 and response.text.startswith('http'):
|
95 |
+
file_url = response.text
|
96 |
+
logger.info(f"File uploaded successfully: {file_url}")
|
97 |
+
return file_url
|
98 |
+
else:
|
99 |
+
raise Exception(f"Upload failed: {response.text}")
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"File upload error: {str(e)}")
|
103 |
+
return None
|
104 |
+
finally:
|
105 |
+
if 'new_path' in locals() and os.path.exists(new_path):
|
106 |
+
try:
|
107 |
+
os.remove(new_path)
|
108 |
+
except:
|
109 |
+
pass
|
110 |
+
|
111 |
+
def add_watermark(video_path):
|
112 |
+
"""OpenCV๋ฅผ ์ฌ์ฉํ์ฌ ๋น๋์ค์ ์ํฐ๋งํฌ ์ถ๊ฐ"""
|
113 |
+
try:
|
114 |
+
cap = cv2.VideoCapture(video_path)
|
115 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
116 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
117 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
118 |
+
|
119 |
+
text = "GiniGEN.AI"
|
120 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
121 |
+
font_scale = height * 0.05 / 30
|
122 |
+
thickness = 2
|
123 |
+
color = (255, 255, 255)
|
124 |
+
|
125 |
+
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
126 |
+
margin = int(height * 0.02)
|
127 |
+
x_pos = width - text_width - margin
|
128 |
+
y_pos = height - margin
|
129 |
+
|
130 |
+
output_path = "watermarked_output.mp4"
|
131 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
132 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
133 |
+
|
134 |
+
while cap.isOpened():
|
135 |
+
ret, frame = cap.read()
|
136 |
+
if not ret:
|
137 |
+
break
|
138 |
+
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
139 |
+
out.write(frame)
|
140 |
+
|
141 |
+
cap.release()
|
142 |
+
out.release()
|
143 |
+
|
144 |
+
return output_path
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error adding watermark: {str(e)}")
|
148 |
+
return video_path
|
149 |
+
|
150 |
+
def generate_video(image, prompt):
|
151 |
+
logger.info("Starting video generation with API")
|
152 |
+
try:
|
153 |
+
API_KEY = os.getenv("API_KEY", "").strip()
|
154 |
+
if not API_KEY:
|
155 |
+
return "API key not properly configured"
|
156 |
+
|
157 |
+
temp_dir = "temp_videos"
|
158 |
+
os.makedirs(temp_dir, exist_ok=True)
|
159 |
+
|
160 |
+
image_url = None
|
161 |
+
if image:
|
162 |
+
image_url = upload_to_catbox(image)
|
163 |
+
if not image_url:
|
164 |
+
return "Failed to upload image"
|
165 |
+
logger.info(f"Input image URL: {image_url}")
|
166 |
+
|
167 |
+
generation_url = "https://api.minimaxi.chat/v1/video_generation"
|
168 |
+
headers = {
|
169 |
+
'authorization': f'Bearer {API_KEY}',
|
170 |
+
'Content-Type': 'application/json'
|
171 |
+
}
|
172 |
+
|
173 |
+
payload = {
|
174 |
+
"model": "video-01",
|
175 |
+
"prompt": prompt if prompt else "",
|
176 |
+
"prompt_optimizer": True
|
177 |
+
}
|
178 |
+
|
179 |
+
if image_url:
|
180 |
+
payload["first_frame_image"] = image_url
|
181 |
+
|
182 |
+
logger.info(f"Sending request with payload: {payload}")
|
183 |
+
|
184 |
+
response = requests.post(generation_url, headers=headers, json=payload)
|
185 |
+
|
186 |
+
if not response.ok:
|
187 |
+
error_msg = f"Failed to create video generation task: {response.text}"
|
188 |
+
logger.error(error_msg)
|
189 |
+
return error_msg
|
190 |
+
|
191 |
+
response_data = response.json()
|
192 |
+
task_id = response_data.get('task_id')
|
193 |
+
if not task_id:
|
194 |
+
return "Failed to get task ID from response"
|
195 |
+
|
196 |
+
query_url = "https://api.minimaxi.chat/v1/query/video_generation"
|
197 |
+
max_attempts = 30
|
198 |
+
attempt = 0
|
199 |
+
|
200 |
+
while attempt < max_attempts:
|
201 |
+
time.sleep(10)
|
202 |
+
query_response = requests.get(
|
203 |
+
f"{query_url}?task_id={task_id}",
|
204 |
+
headers={'authorization': f'Bearer {API_KEY}'}
|
205 |
+
)
|
206 |
+
|
207 |
+
if not query_response.ok:
|
208 |
+
attempt += 1
|
209 |
+
continue
|
210 |
+
|
211 |
+
status_data = query_response.json()
|
212 |
+
status = status_data.get('status')
|
213 |
+
|
214 |
+
if status == 'Success':
|
215 |
+
file_id = status_data.get('file_id')
|
216 |
+
if not file_id:
|
217 |
+
return "Failed to get file ID"
|
218 |
+
|
219 |
+
retrieve_url = "https://api.minimaxi.chat/v1/files/retrieve"
|
220 |
+
params = {'file_id': file_id}
|
221 |
+
|
222 |
+
file_response = requests.get(
|
223 |
+
retrieve_url,
|
224 |
+
headers={'authorization': f'Bearer {API_KEY}'},
|
225 |
+
params=params
|
226 |
+
)
|
227 |
+
|
228 |
+
if not file_response.ok:
|
229 |
+
return "Failed to retrieve video file"
|
230 |
+
|
231 |
+
try:
|
232 |
+
file_data = file_response.json()
|
233 |
+
download_url = file_data.get('file', {}).get('download_url')
|
234 |
+
if not download_url:
|
235 |
+
return "Failed to get download URL"
|
236 |
+
|
237 |
+
result_info = {
|
238 |
+
"timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
|
239 |
+
"input_image": image_url,
|
240 |
+
"output_video_url": download_url,
|
241 |
+
"prompt": prompt
|
242 |
+
}
|
243 |
+
logger.info(f"Video generation result: {json.dumps(result_info, indent=2)}")
|
244 |
+
|
245 |
+
video_response = requests.get(download_url)
|
246 |
+
if not video_response.ok:
|
247 |
+
return "Failed to download video"
|
248 |
+
|
249 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
250 |
+
output_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
251 |
+
|
252 |
+
with open(output_path, 'wb') as f:
|
253 |
+
f.write(video_response.content)
|
254 |
+
|
255 |
+
final_path = add_watermark(output_path)
|
256 |
+
|
257 |
+
# ์ค๋์ค ์ฒ๋ฆฌ ์ถ๊ฐ
|
258 |
+
try:
|
259 |
+
final_path_with_audio = video_to_audio(
|
260 |
+
final_path,
|
261 |
+
prompt=prompt,
|
262 |
+
negative_prompt="music",
|
263 |
+
seed=-1,
|
264 |
+
num_steps=25,
|
265 |
+
cfg_strength=4.5,
|
266 |
+
duration=8
|
267 |
+
)
|
268 |
+
|
269 |
+
# ์์ ํ์ผ ์ ๋ฆฌ
|
270 |
+
if output_path != final_path:
|
271 |
+
os.remove(output_path)
|
272 |
+
if final_path != final_path_with_audio:
|
273 |
+
os.remove(final_path)
|
274 |
+
|
275 |
+
return final_path_with_audio
|
276 |
+
except Exception as e:
|
277 |
+
logger.error(f"Error in audio processing: {str(e)}")
|
278 |
+
return final_path # ์ค๋์ค ์ฒ๋ฆฌ ์คํจ ์ ์ํฐ๋งํฌ๋ง ๋ ๋น๋์ค ๋ฐํ
|
279 |
+
|
280 |
+
except Exception as e:
|
281 |
+
logger.error(f"Error processing video file: {str(e)}")
|
282 |
+
return "Error processing video file"
|
283 |
+
|
284 |
+
css = """
|
285 |
+
footer {display: none}
|
286 |
+
.gradio-container {max-width: 1200px !important}
|
287 |
+
"""
|
288 |
+
|
289 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
290 |
+
gr.HTML('<div style="text-align: center; font-size: 1.5em; margin: 10px 0;">๐ฅ Image to Video Generator</div>')
|
291 |
+
|
292 |
+
with gr.Row():
|
293 |
+
with gr.Column(scale=3):
|
294 |
+
video_prompt = gr.Textbox(
|
295 |
+
label="Video Description",
|
296 |
+
placeholder="Enter video description...",
|
297 |
+
lines=3
|
298 |
+
)
|
299 |
+
upload_image = gr.Image(type="filepath", label="Upload First Frame Image")
|
300 |
+
video_generate_btn = gr.Button("๐ฌ Generate Video")
|
301 |
+
|
302 |
+
with gr.Column(scale=4):
|
303 |
+
video_output = gr.Video(label="Generated Video")
|
304 |
|
305 |
+
def process_and_generate_video(image, prompt):
|
306 |
+
if image is None:
|
307 |
+
return "Please upload an image"
|
308 |
+
|
309 |
+
try:
|
310 |
+
img = Image.open(image)
|
311 |
+
if img.mode != 'RGB':
|
312 |
+
img = img.convert('RGB')
|
313 |
+
|
314 |
+
temp_path = f"temp_{int(time.time())}.png"
|
315 |
+
img.save(temp_path, 'PNG')
|
316 |
+
|
317 |
+
result = generate_video(temp_path, prompt)
|
318 |
+
|
319 |
+
try:
|
320 |
+
os.remove(temp_path)
|
321 |
+
except:
|
322 |
+
pass
|
323 |
+
|
324 |
+
return result
|
325 |
+
|
326 |
+
except Exception as e:
|
327 |
+
logger.error(f"Error processing image: {str(e)}")
|
328 |
+
return "Error processing image"
|
329 |
|
330 |
+
video_generate_btn.click(
|
331 |
+
process_and_generate_video,
|
332 |
+
inputs=[upload_image, video_prompt],
|
333 |
+
outputs=video_output
|
334 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
if __name__ == "__main__":
|
337 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|