File size: 24,205 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from parameterized import parameterized

from transformers.testing_utils import require_flax, require_tf, require_torch, require_vision
from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torch_available, is_vision_available


if is_torch_available():
    import torch

if is_tf_available():
    import tensorflow as tf

if is_flax_available():
    import jax

if is_vision_available():
    import PIL.Image

    from transformers.image_transforms import (
        center_crop,
        center_to_corners_format,
        convert_to_rgb,
        corners_to_center_format,
        flip_channel_order,
        get_resize_output_image_size,
        id_to_rgb,
        normalize,
        pad,
        resize,
        rgb_to_id,
        to_channel_dimension_format,
        to_pil_image,
    )


def get_random_image(height, width, num_channels=3, channels_first=True):
    shape = (num_channels, height, width) if channels_first else (height, width, num_channels)
    random_array = np.random.randint(0, 256, shape, dtype=np.uint8)
    return random_array


@require_vision
class ImageTransformsTester(unittest.TestCase):
    @parameterized.expand(
        [
            ("numpy_float_channels_first", (3, 4, 5), np.float32),
            ("numpy_float_channels_last", (4, 5, 3), np.float32),
            ("numpy_float_channels_first", (3, 4, 5), np.float64),
            ("numpy_float_channels_last", (4, 5, 3), np.float64),
            ("numpy_int_channels_first", (3, 4, 5), np.int32),
            ("numpy_uint_channels_first", (3, 4, 5), np.uint8),
        ]
    )
    @require_vision
    def test_to_pil_image(self, name, image_shape, dtype):
        image = np.random.randint(0, 256, image_shape).astype(dtype)
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        # make sure image is correctly rescaled
        self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0)

    @parameterized.expand(
        [
            ("numpy_float_channels_first", (3, 4, 5), np.float32),
            ("numpy_float_channels_first", (3, 4, 5), np.float64),
            ("numpy_float_channels_last", (4, 5, 3), np.float32),
            ("numpy_float_channels_last", (4, 5, 3), np.float64),
        ]
    )
    @require_vision
    def test_to_pil_image_from_float(self, name, image_shape, dtype):
        image = np.random.rand(*image_shape).astype(dtype)
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        # make sure image is correctly rescaled
        self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0)

        # Make sure that an exception is raised if image is not in [0, 1]
        image = np.random.randn(*image_shape).astype(dtype)
        with self.assertRaises(ValueError):
            to_pil_image(image)

    @require_vision
    def test_to_pil_image_from_mask(self):
        # Make sure binary mask remains a binary mask
        image = np.random.randint(0, 2, (3, 4, 5)).astype(np.uint8)
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        np_img = np.asarray(pil_image)
        self.assertTrue(np_img.min() == 0)
        self.assertTrue(np_img.max() == 1)

        image = np.random.randint(0, 2, (3, 4, 5)).astype(np.float32)
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        np_img = np.asarray(pil_image)
        self.assertTrue(np_img.min() == 0)
        self.assertTrue(np_img.max() == 1)

    @require_tf
    def test_to_pil_image_from_tensorflow(self):
        # channels_first
        image = tf.random.uniform((3, 4, 5))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        # channels_last
        image = tf.random.uniform((4, 5, 3))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

    @require_torch
    def test_to_pil_image_from_torch(self):
        # channels first
        image = torch.rand((3, 4, 5))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        # channels last
        image = torch.rand((4, 5, 3))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

    @require_flax
    def test_to_pil_image_from_jax(self):
        key = jax.random.PRNGKey(0)
        # channel first
        image = jax.random.uniform(key, (3, 4, 5))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

        # channel last
        image = jax.random.uniform(key, (4, 5, 3))
        pil_image = to_pil_image(image)
        self.assertIsInstance(pil_image, PIL.Image.Image)
        self.assertEqual(pil_image.size, (5, 4))

    def test_to_channel_dimension_format(self):
        # Test that function doesn't reorder if channel dim matches the input.
        image = np.random.rand(3, 4, 5)
        image = to_channel_dimension_format(image, "channels_first")
        self.assertEqual(image.shape, (3, 4, 5))

        image = np.random.rand(4, 5, 3)
        image = to_channel_dimension_format(image, "channels_last")
        self.assertEqual(image.shape, (4, 5, 3))

        # Test that function reorders if channel dim doesn't match the input.
        image = np.random.rand(3, 4, 5)
        image = to_channel_dimension_format(image, "channels_last")
        self.assertEqual(image.shape, (4, 5, 3))

        image = np.random.rand(4, 5, 3)
        image = to_channel_dimension_format(image, "channels_first")
        self.assertEqual(image.shape, (3, 4, 5))

        # Can pass in input_data_format and works if data format is ambiguous or unknown.
        image = np.random.rand(4, 5, 6)
        image = to_channel_dimension_format(image, "channels_first", input_channel_dim="channels_last")
        self.assertEqual(image.shape, (6, 4, 5))

    def test_get_resize_output_image_size(self):
        image = np.random.randint(0, 256, (3, 224, 224))

        # Test the output size defaults to (x, x) if an int is given.
        self.assertEqual(get_resize_output_image_size(image, 10), (10, 10))
        self.assertEqual(get_resize_output_image_size(image, [10]), (10, 10))
        self.assertEqual(get_resize_output_image_size(image, (10,)), (10, 10))

        # Test the output size is the same as the input if a two element tuple/list is given.
        self.assertEqual(get_resize_output_image_size(image, (10, 20)), (10, 20))
        self.assertEqual(get_resize_output_image_size(image, [10, 20]), (10, 20))
        self.assertEqual(get_resize_output_image_size(image, (10, 20), default_to_square=True), (10, 20))
        # To match pytorch behaviour, max_size is only relevant if size is an int
        self.assertEqual(get_resize_output_image_size(image, (10, 20), max_size=5), (10, 20))

        # Test output size = (int(size * height / width), size) if size is an int and height > width
        image = np.random.randint(0, 256, (3, 50, 40))
        self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (25, 20))

        # Test output size = (size, int(size * width / height)) if size is an int and width <= height
        image = np.random.randint(0, 256, (3, 40, 50))
        self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (20, 25))

        # Test size is resized if longer size > max_size
        image = np.random.randint(0, 256, (3, 50, 40))
        self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False, max_size=22), (22, 17))

        # Test output size = (int(size * height / width), size) if size is an int and height > width and
        # input has 4 channels
        image = np.random.randint(0, 256, (4, 50, 40))
        self.assertEqual(
            get_resize_output_image_size(image, 20, default_to_square=False, input_data_format="channels_first"),
            (25, 20),
        )

        # Test correct channel dimension is returned if output size if height == 3
        # Defaults to input format - channels first
        image = np.random.randint(0, 256, (3, 18, 97))
        resized_image = resize(image, (3, 20))
        self.assertEqual(resized_image.shape, (3, 3, 20))

        # Defaults to input format - channels last
        image = np.random.randint(0, 256, (18, 97, 3))
        resized_image = resize(image, (3, 20))
        self.assertEqual(resized_image.shape, (3, 20, 3))

        image = np.random.randint(0, 256, (3, 18, 97))
        resized_image = resize(image, (3, 20), data_format="channels_last")
        self.assertEqual(resized_image.shape, (3, 20, 3))

        image = np.random.randint(0, 256, (18, 97, 3))
        resized_image = resize(image, (3, 20), data_format="channels_first")
        self.assertEqual(resized_image.shape, (3, 3, 20))

    def test_resize(self):
        image = np.random.randint(0, 256, (3, 224, 224))

        # Check the channel order is the same by default
        resized_image = resize(image, (30, 40))
        self.assertIsInstance(resized_image, np.ndarray)
        self.assertEqual(resized_image.shape, (3, 30, 40))

        # Check channel order is changed if specified
        resized_image = resize(image, (30, 40), data_format="channels_last")
        self.assertIsInstance(resized_image, np.ndarray)
        self.assertEqual(resized_image.shape, (30, 40, 3))

        # Check PIL.Image.Image is returned if return_numpy=False
        resized_image = resize(image, (30, 40), return_numpy=False)
        self.assertIsInstance(resized_image, PIL.Image.Image)
        # PIL size is in (width, height) order
        self.assertEqual(resized_image.size, (40, 30))

        # Check an image with float values between 0-1 is returned with values in this range
        image = np.random.rand(3, 224, 224)
        resized_image = resize(image, (30, 40))
        self.assertIsInstance(resized_image, np.ndarray)
        self.assertEqual(resized_image.shape, (3, 30, 40))
        self.assertTrue(np.all(resized_image >= 0))
        self.assertTrue(np.all(resized_image <= 1))

        # Check that an image with 4 channels is resized correctly
        image = np.random.randint(0, 256, (4, 224, 224))
        resized_image = resize(image, (30, 40), input_data_format="channels_first")
        self.assertIsInstance(resized_image, np.ndarray)
        self.assertEqual(resized_image.shape, (4, 30, 40))

    def test_normalize(self):
        image = np.random.randint(0, 256, (224, 224, 3)) / 255

        # Test that exception is raised if inputs are incorrect
        # Not a numpy array image
        with self.assertRaises(ValueError):
            normalize(5, 5, 5)

        # Number of mean values != number of channels
        with self.assertRaises(ValueError):
            normalize(image, mean=(0.5, 0.6), std=1)

        # Number of std values != number of channels
        with self.assertRaises(ValueError):
            normalize(image, mean=1, std=(0.5, 0.6))

        # Test result is correct - output data format is channels_first and normalization
        # correctly computed
        mean = (0.5, 0.6, 0.7)
        std = (0.1, 0.2, 0.3)
        expected_image = ((image - mean) / std).transpose((2, 0, 1))

        normalized_image = normalize(image, mean=mean, std=std, data_format="channels_first")
        self.assertIsInstance(normalized_image, np.ndarray)
        self.assertEqual(normalized_image.shape, (3, 224, 224))
        self.assertTrue(np.allclose(normalized_image, expected_image))

        # Test image with 4 channels is normalized correctly
        image = np.random.randint(0, 256, (224, 224, 4)) / 255
        mean = (0.5, 0.6, 0.7, 0.8)
        std = (0.1, 0.2, 0.3, 0.4)
        expected_image = (image - mean) / std
        self.assertTrue(
            np.allclose(normalize(image, mean=mean, std=std, input_data_format="channels_last"), expected_image)
        )

    def test_center_crop(self):
        image = np.random.randint(0, 256, (3, 224, 224))

        # Test that exception is raised if inputs are incorrect
        with self.assertRaises(ValueError):
            center_crop(image, 10)

        # Test result is correct - output data format is channels_first and center crop
        # correctly computed
        expected_image = image[:, 52:172, 82:142].transpose(1, 2, 0)
        cropped_image = center_crop(image, (120, 60), data_format="channels_last")
        self.assertIsInstance(cropped_image, np.ndarray)
        self.assertEqual(cropped_image.shape, (120, 60, 3))
        self.assertTrue(np.allclose(cropped_image, expected_image))

        # Test that image is padded with zeros if crop size is larger than image size
        expected_image = np.zeros((300, 260, 3))
        expected_image[38:262, 18:242, :] = image.transpose((1, 2, 0))
        cropped_image = center_crop(image, (300, 260), data_format="channels_last")
        self.assertIsInstance(cropped_image, np.ndarray)
        self.assertEqual(cropped_image.shape, (300, 260, 3))
        self.assertTrue(np.allclose(cropped_image, expected_image))

        # Test image with 4 channels is cropped correctly
        image = np.random.randint(0, 256, (224, 224, 4))
        expected_image = image[52:172, 82:142, :]
        self.assertTrue(np.allclose(center_crop(image, (120, 60), input_data_format="channels_last"), expected_image))

    def test_center_to_corners_format(self):
        bbox_center = np.array([[10, 20, 4, 8], [15, 16, 3, 4]])
        expected = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]])
        self.assertTrue(np.allclose(center_to_corners_format(bbox_center), expected))

        # Check that the function and inverse function are inverse of each other
        self.assertTrue(np.allclose(corners_to_center_format(center_to_corners_format(bbox_center)), bbox_center))

    def test_corners_to_center_format(self):
        bbox_corners = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]])
        expected = np.array([[10, 20, 4, 8], [15, 16, 3, 4]])
        self.assertTrue(np.allclose(corners_to_center_format(bbox_corners), expected))

        # Check that the function and inverse function are inverse of each other
        self.assertTrue(np.allclose(center_to_corners_format(corners_to_center_format(bbox_corners)), bbox_corners))

    def test_rgb_to_id(self):
        # test list input
        rgb = [125, 4, 255]
        self.assertEqual(rgb_to_id(rgb), 16712829)

        # test numpy array input
        color = np.array(
            [
                [
                    [213, 54, 165],
                    [88, 207, 39],
                    [156, 108, 128],
                ],
                [
                    [183, 194, 46],
                    [137, 58, 88],
                    [114, 131, 233],
                ],
            ]
        )
        expected = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]])
        self.assertTrue(np.allclose(rgb_to_id(color), expected))

    def test_id_to_rgb(self):
        # test int input
        self.assertEqual(id_to_rgb(16712829), [125, 4, 255])

        # test array input
        id_array = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]])
        color = np.array(
            [
                [
                    [213, 54, 165],
                    [88, 207, 39],
                    [156, 108, 128],
                ],
                [
                    [183, 194, 46],
                    [137, 58, 88],
                    [114, 131, 233],
                ],
            ]
        )
        self.assertTrue(np.allclose(id_to_rgb(id_array), color))

    def test_pad(self):
        # fmt: off
        image = np.array([[
            [0, 1],
            [2, 3],
        ]])
        # fmt: on

        # Test that exception is raised if unknown padding mode is specified
        with self.assertRaises(ValueError):
            pad(image, 10, mode="unknown")

        # Test that exception is raised if invalid padding is specified
        with self.assertRaises(ValueError):
            # Cannot pad on channel dimension
            pad(image, (5, 10, 10))

        # Test image is padded equally on all sides is padding is an int
        # fmt: off
        expected_image = np.array([
            [[0, 0, 0, 0],
             [0, 0, 1, 0],
             [0, 2, 3, 0],
             [0, 0, 0, 0]],
        ])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, 1)))

        # Test the left and right of each axis is padded (pad_left, pad_right)
        # fmt: off
        expected_image = np.array(
            [[0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0],
             [0, 0, 2, 3, 0],
             [0, 0, 0, 0, 0]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, (2, 1))))

        # Test only one axis is padded (pad_left, pad_right)
        # fmt: off
        expected_image = np.array([[
            [9, 9],
            [9, 9],
            [0, 1],
            [2, 3],
            [9, 9]
        ]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, ((2, 1), (0, 0)), constant_values=9)))

        # Test padding with a constant value
        # fmt: off
        expected_image = np.array([[
            [8, 8, 0, 1, 9],
            [8, 8, 2, 3, 9],
            [8, 8, 7, 7, 9],
            [8, 8, 7, 7, 9]
        ]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), constant_values=((6, 7), (8, 9)))))

        # fmt: off
        image = np.array([[
            [0, 1, 2],
            [3, 4, 5],
            [6, 7, 8],
        ]])
        # fmt: on

        # Test padding with PaddingMode.REFLECT
        # fmt: off
        expected_image = np.array([[
            [2, 1, 0, 1, 2, 1],
            [5, 4, 3, 4, 5, 4],
            [8, 7, 6, 7, 8, 7],
            [5, 4, 3, 4, 5, 4],
            [2, 1, 0, 1, 2, 1],
        ]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect")))

        # Test padding with PaddingMode.REPLICATE
        # fmt: off
        expected_image = np.array([[
            [0, 0, 0, 1, 2, 2],
            [3, 3, 3, 4, 5, 5],
            [6, 6, 6, 7, 8, 8],
            [6, 6, 6, 7, 8, 8],
            [6, 6, 6, 7, 8, 8],
        ]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="replicate")))

        # Test padding with PaddingMode.SYMMETRIC
        # fmt: off
        expected_image = np.array([[
            [1, 0, 0, 1, 2, 2],
            [4, 3, 3, 4, 5, 5],
            [7, 6, 6, 7, 8, 8],
            [7, 6, 6, 7, 8, 8],
            [4, 3, 3, 4, 5, 5],
        ]])
        # fmt: on
        self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="symmetric")))

        # Test we can specify the output data format
        # Test padding with PaddingMode.REFLECT
        # fmt: off
        image = np.array([[
            [0, 1],
            [2, 3],
        ]])
        expected_image = np.array([
            [[0], [1], [0], [1], [0]],
            [[2], [3], [2], [3], [2]],
            [[0], [1], [0], [1], [0]],
            [[2], [3], [2], [3], [2]]
        ])
        # fmt: on
        self.assertTrue(
            np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect", data_format="channels_last"))
        )

        # Test we can pad on an image with 2 channels
        # fmt: off
        image = np.array([
            [[0, 1], [2, 3]],
        ])
        expected_image = np.array([
            [[0, 0], [0, 1], [2, 3]],
            [[0, 0], [0, 0], [0, 0]],
        ])
        # fmt: on
        self.assertTrue(
            np.allclose(
                expected_image, pad(image, ((0, 1), (1, 0)), mode="constant", input_data_format="channels_last")
            )
        )

    @require_vision
    def test_convert_to_rgb(self):
        # Test that an RGBA image is converted to RGB
        image = np.array([[[1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.uint8)
        pil_image = PIL.Image.fromarray(image)
        self.assertEqual(pil_image.mode, "RGBA")
        self.assertEqual(pil_image.size, (2, 1))

        # For the moment, numpy images are returned as is
        rgb_image = convert_to_rgb(image)
        self.assertEqual(rgb_image.shape, (1, 2, 4))
        self.assertTrue(np.allclose(rgb_image, image))

        # And PIL images are converted
        rgb_image = convert_to_rgb(pil_image)
        self.assertEqual(rgb_image.mode, "RGB")
        self.assertEqual(rgb_image.size, (2, 1))
        self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[1, 2, 3], [5, 6, 7]]], dtype=np.uint8)))

        # Test that a grayscale image is converted to RGB
        image = np.array([[0, 255]], dtype=np.uint8)
        pil_image = PIL.Image.fromarray(image)
        self.assertEqual(pil_image.mode, "L")
        self.assertEqual(pil_image.size, (2, 1))
        rgb_image = convert_to_rgb(pil_image)
        self.assertEqual(rgb_image.mode, "RGB")
        self.assertEqual(rgb_image.size, (2, 1))
        self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8)))

    def test_flip_channel_order(self):
        # fmt: off
        img_channels_first = np.array([
            [[ 0,  1,  2,  3],
             [ 4,  5,  6,  7]],

            [[ 8,  9, 10, 11],
             [12, 13, 14, 15]],

            [[16, 17, 18, 19],
             [20, 21, 22, 23]],
        ])
        # fmt: on
        img_channels_last = np.moveaxis(img_channels_first, 0, -1)
        # fmt: off
        flipped_img_channels_first = np.array([
            [[16, 17, 18, 19],
             [20, 21, 22, 23]],

            [[ 8,  9, 10, 11],
             [12, 13, 14, 15]],

            [[ 0,  1,  2,  3],
             [ 4,  5,  6,  7]],
        ])
        # fmt: on
        flipped_img_channels_last = np.moveaxis(flipped_img_channels_first, 0, -1)

        self.assertTrue(np.allclose(flip_channel_order(img_channels_first), flipped_img_channels_first))
        self.assertTrue(
            np.allclose(flip_channel_order(img_channels_first, "channels_last"), flipped_img_channels_last)
        )

        self.assertTrue(np.allclose(flip_channel_order(img_channels_last), flipped_img_channels_last))
        self.assertTrue(
            np.allclose(flip_channel_order(img_channels_last, "channels_first"), flipped_img_channels_first)
        )

        # Can flip when the image has 2 channels
        # fmt: off
        img_channels_first = np.array([
            [[ 0,  1,  2,  3],
             [ 4,  5,  6,  7]],

            [[ 8,  9, 10, 11],
             [12, 13, 14, 15]],
        ])
        # fmt: on
        flipped_img_channels_first = img_channels_first[::-1, :, :]
        self.assertTrue(
            np.allclose(
                flip_channel_order(img_channels_first, input_data_format="channels_first"), flipped_img_channels_first
            )
        )