File size: 6,855 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError

from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax


if is_flax_available():
    import os

    from flax.core.frozen_dict import unfreeze
    from flax.traverse_util import flatten_dict

    from transformers import FlaxBertModel

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8


@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-model-flax")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        model.push_to_hub("test-model-flax", use_auth_token=self._token)

        new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model-flax")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, use_auth_token=self._token)

        new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        model.push_to_hub("valid_org/test-model-flax-org", use_auth_token=self._token)

        new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, use_auth_token=self._token
            )

        new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")


def check_models_equal(model1, model2):
    models_are_equal = True
    flat_params_1 = flatten_dict(model1.params)
    flat_params_2 = flatten_dict(model2.params)
    for key in flat_params_1.keys():
        if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
            models_are_equal = False

    return models_are_equal


@require_flax
class FlaxModelUtilsTest(unittest.TestCase):
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"

        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)