Spaces:
Paused
Paused
File size: 27,861 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import inspect
import json
import os
import random
import tempfile
import unittest
import unittest.mock as mock
from huggingface_hub import HfFolder, Repository, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import is_tf_available, is_torch_available
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import ( # noqa: F401
TOKEN,
USER,
CaptureLogger,
_tf_gpu_memory_limit,
is_pt_tf_cross_test,
is_staging_test,
require_safetensors,
require_tf,
slow,
)
from transformers.utils import SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging
logger = logging.get_logger(__name__)
if is_tf_available():
import h5py
import numpy as np
import tensorflow as tf
from transformers import (
BertConfig,
PreTrainedModel,
PushToHubCallback,
RagRetriever,
TFBertForMaskedLM,
TFBertForSequenceClassification,
TFBertModel,
TFPreTrainedModel,
TFRagModel,
)
from transformers.modeling_tf_utils import tf_shard_checkpoint, unpack_inputs
from transformers.tf_utils import stable_softmax
tf.config.experimental.enable_tensor_float_32_execution(False)
if _tf_gpu_memory_limit is not None:
gpus = tf.config.list_physical_devices("GPU")
for gpu in gpus:
# Restrict TensorFlow to only allocate x GB of memory on the GPUs
try:
tf.config.set_logical_device_configuration(
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
)
logical_gpus = tf.config.list_logical_devices("GPU")
print("Logical GPUs", logical_gpus)
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
if is_torch_available():
from transformers import BertModel
@require_tf
class TFModelUtilsTest(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_load_from_one_file(self):
try:
tmp_file = tempfile.mktemp()
with open(tmp_file, "wb") as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", f)
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = TFBertModel.from_pretrained(tmp_file, config=config)
finally:
os.remove(tmp_file)
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
_ = TFBertModel.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", config=config
)
# tests whether the unpack_inputs function behaves as expected
def test_unpack_inputs(self):
class DummyModel:
def __init__(self):
config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False}
self.config = PretrainedConfig(**config_kwargs)
self.main_input_name = "input_ids"
@unpack_inputs
def call(
self,
input_ids=None,
past_key_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict
@unpack_inputs
def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None):
return pixel_values, output_attentions, output_hidden_states, return_dict
dummy_model = DummyModel()
input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32)
past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32)
pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32)
# test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config.
output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values)
tf.debugging.assert_equal(output[0], input_ids)
tf.debugging.assert_equal(output[1], past_key_values)
self.assertFalse(output[2])
self.assertFalse(output[3])
self.assertFalse(output[4])
# test case 2: Same as above, but with positional arguments.
output = dummy_model.call(input_ids, past_key_values)
tf.debugging.assert_equal(output[0], input_ids)
tf.debugging.assert_equal(output[1], past_key_values)
self.assertFalse(output[2])
self.assertFalse(output[3])
self.assertFalse(output[4])
# test case 3: We can also pack everything in the first input.
output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values})
tf.debugging.assert_equal(output[0], input_ids)
tf.debugging.assert_equal(output[1], past_key_values)
self.assertFalse(output[2])
self.assertFalse(output[3])
self.assertFalse(output[4])
# test case 4: Explicit boolean arguments should override the config.
output = dummy_model.call(
input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True
)
tf.debugging.assert_equal(output[0], input_ids)
tf.debugging.assert_equal(output[1], past_key_values)
self.assertFalse(output[2])
self.assertFalse(output[3])
self.assertTrue(output[4])
# test case 5: Unexpected arguments should raise an exception.
with self.assertRaises(ValueError):
output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar")
# test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the
# decorated function as its main input.
output = dummy_model.foo(pixel_values=pixel_values)
tf.debugging.assert_equal(output[0], pixel_values)
self.assertFalse(output[1])
self.assertFalse(output[2])
self.assertFalse(output[3])
# Tests whether the stable softmax is stable on CPU, with and without XLA
def test_xla_stable_softmax(self):
large_penalty = -1e9
n_tokens = 10
batch_size = 8
def masked_softmax(x, boolean_mask):
numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
masked_x = x + numerical_mask
return stable_softmax(masked_x)
xla_masked_softmax = tf.function(masked_softmax, jit_compile=True)
xla_stable_softmax = tf.function(stable_softmax, jit_compile=True)
x = tf.random.normal((batch_size, n_tokens))
# Same outcome regardless of the boolean mask here
masked_tokens = random.randint(0, n_tokens)
boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32)
# We can randomly mask a random numerical input OUTSIDE XLA
numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty
masked_x = x + numerical_mask
xla_out = xla_stable_softmax(masked_x)
out = stable_softmax(masked_x)
assert tf.experimental.numpy.allclose(xla_out, out)
# The stable softmax has the same output as the original softmax
unstable_out = tf.nn.softmax(masked_x)
assert tf.experimental.numpy.allclose(unstable_out, out)
# We can randomly mask a random numerical input INSIDE XLA
xla_out = xla_masked_softmax(x, boolean_mask)
out = masked_softmax(x, boolean_mask)
assert tf.experimental.numpy.allclose(xla_out, out)
def test_checkpoint_sharding_from_hub(self):
model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
# the model above is the same as the model below, just a sharded version.
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.weights, ref_model.weights):
assert np.allclose(p1.numpy(), p2.numpy())
def test_sharded_checkpoint_with_prefix(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b")
sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b")
for p1, p2 in zip(model.weights, sharded_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
self.assertTrue(p1.name.startswith("a/b/"))
self.assertTrue(p2.name.startswith("a/b/"))
def test_sharded_checkpoint_transfer(self):
# If this doesn't throw an error then the test passes
TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded")
@is_pt_tf_cross_test
def test_checkpoint_sharding_local_from_pt(self):
with tempfile.TemporaryDirectory() as tmp_dir:
_ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded")
model = TFBertModel.from_pretrained(tmp_dir, from_pt=True)
# the model above is the same as the model below, just a sharded pytorch version.
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.weights, ref_model.weights):
assert np.allclose(p1.numpy(), p2.numpy())
@is_pt_tf_cross_test
def test_checkpoint_loading_with_prefix_from_pt(self):
model = TFBertModel.from_pretrained(
"hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b"
)
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True)
for p1, p2 in zip(model.weights, ref_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
self.assertTrue(p1.name.startswith("a/b/"))
@is_pt_tf_cross_test
def test_checkpoint_sharding_hub_from_pt(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True)
# the model above is the same as the model below, just a sharded pytorch version.
ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
for p1, p2 in zip(model.weights, ref_model.weights):
assert np.allclose(p1.numpy(), p2.numpy())
def test_shard_checkpoint(self):
# This is the model we will use, total size 340,000 bytes.
model = tf.keras.Sequential(
[
tf.keras.layers.Dense(200, use_bias=False), # size 80,000
tf.keras.layers.Dense(200, use_bias=False), # size 160,000
tf.keras.layers.Dense(100, use_bias=False), # size 80,000
tf.keras.layers.Dense(50, use_bias=False), # size 20,000
]
)
inputs = tf.zeros((1, 100), dtype=tf.float32)
model(inputs)
weights = model.weights
weights_dict = {w.name: w for w in weights}
with self.subTest("No shard when max size is bigger than model size"):
shards, index = tf_shard_checkpoint(weights)
self.assertIsNone(index)
self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights})
with self.subTest("Test sharding, no weights bigger than max size"):
shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB")
# Split is first two layers then last two.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"dense/kernel:0": "tf_model-00001-of-00002.h5",
"dense_1/kernel:0": "tf_model-00001-of-00002.h5",
"dense_2/kernel:0": "tf_model-00002-of-00002.h5",
"dense_3/kernel:0": "tf_model-00002-of-00002.h5",
},
},
)
shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]]
shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2})
with self.subTest("Test sharding with weights bigger than max size"):
shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB")
# Split is first layer, second layer then last 2.
self.assertDictEqual(
index,
{
"metadata": {"total_size": 340000},
"weight_map": {
"dense/kernel:0": "tf_model-00001-of-00003.h5",
"dense_1/kernel:0": "tf_model-00002-of-00003.h5",
"dense_2/kernel:0": "tf_model-00003-of-00003.h5",
"dense_3/kernel:0": "tf_model-00003-of-00003.h5",
},
},
)
shard1 = [weights_dict["dense/kernel:0"]]
shard2 = [weights_dict["dense_1/kernel:0"]]
shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]]
self.assertDictEqual(
shards,
{
"tf_model-00001-of-00003.h5": shard1,
"tf_model-00002-of-00003.h5": shard2,
"tf_model-00003-of-00003.h5": shard3,
},
)
@slow
def test_special_layer_name_sharding(self):
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever)
with tempfile.TemporaryDirectory() as tmp_dir:
for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
model.save_pretrained(tmp_dir, max_shard_size=max_size)
ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever)
for p1, p2 in zip(model.weights, ref_model.weights):
assert np.allclose(p1.numpy(), p2.numpy())
def test_checkpoint_sharding_local(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
# We use the same folder for various sizes to make sure a new save erases the old checkpoint.
for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
model.save_pretrained(tmp_dir, max_shard_size=max_size)
# Get each shard file and its size
shard_to_size = {}
for shard in os.listdir(tmp_dir):
if shard.endswith(".h5"):
shard_file = os.path.join(tmp_dir, shard)
shard_to_size[shard_file] = os.path.getsize(shard_file)
index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME)
# Check there is an index but no regular weight file
self.assertTrue(os.path.isfile(index_file))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))
# Check a file is bigger than max_size only when it has a single weight
for shard_file, size in shard_to_size.items():
if max_size.endswith("kiB"):
max_size_int = int(max_size[:-3]) * 2**10
else:
max_size_int = int(max_size[:-2]) * 10**3
# Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
# the size asked for (since we count parameters)
if size >= max_size_int + 50000:
with h5py.File(shard_file, "r") as state_file:
self.assertEqual(len(state_file), 1)
# Check the index and the shard files found match
with open(index_file, "r", encoding="utf-8") as f:
index = json.loads(f.read())
all_shards = set(index["weight_map"].values())
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")}
self.assertSetEqual(all_shards, shards_found)
# Finally, check the model can be reloaded
new_model = TFBertModel.from_pretrained(tmp_dir)
model.build()
new_model.build()
for p1, p2 in zip(model.weights, new_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
@slow
def test_save_pretrained_signatures(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Short custom TF signature function.
# `input_signature` is specific to BERT.
@tf.function(
input_signature=[
[
tf.TensorSpec([None, None], tf.int32, name="input_ids"),
tf.TensorSpec([None, None], tf.int32, name="token_type_ids"),
tf.TensorSpec([None, None], tf.int32, name="attention_mask"),
]
]
)
def serving_fn(input):
return model(input)
# Using default signature (default behavior) overrides 'serving_default'
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, saved_model=True, signatures=None)
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
self.assertTrue("serving_default" in list(model_loaded.signatures.keys()))
# Providing custom signature function
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn})
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
self.assertTrue("custom_signature" in list(model_loaded.signatures.keys()))
# Providing multiple custom signature function
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
tmp_dir,
saved_model=True,
signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn},
)
model_loaded = tf.keras.models.load_model(f"{tmp_dir}/saved_model/1")
self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys()))
self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys()))
@require_safetensors
def test_safetensors_save_and_load(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, safe_serialization=True)
# No tf_model.h5 file, only a model.safetensors
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME)))
new_model = TFBertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.weights, new_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
@is_pt_tf_cross_test
def test_safetensors_save_and_load_pt_to_tf(self):
model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with tempfile.TemporaryDirectory() as tmp_dir:
pt_model.save_pretrained(tmp_dir, safe_serialization=True)
# Check we have a model.safetensors file
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
new_model = TFBertModel.from_pretrained(tmp_dir)
# Check models are equal
for p1, p2 in zip(model.weights, new_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
@require_safetensors
def test_safetensors_load_from_hub(self):
tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
# Can load from the TF-formatted checkpoint
safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf")
# Check models are equal
for p1, p2 in zip(safetensors_model.weights, tf_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
# Can load from the PyTorch-formatted checkpoint
safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
# Check models are equal
for p1, p2 in zip(safetensors_model.weights, tf_model.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
@require_tf
@is_staging_test
class TFModelPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-model-tf")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-model-tf-callback")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = TFBertModel(config)
# Make sure model is properly initialized
model.build()
logging.set_verbosity_info()
logger = logging.get_logger("transformers.utils.hub")
with CaptureLogger(logger) as cl:
model.push_to_hub("test-model-tf", use_auth_token=self._token)
logging.set_verbosity_warning()
# Check the model card was created and uploaded.
self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out)
new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
models_equal = True
for p1, p2 in zip(model.weights, new_model.weights):
if not tf.math.reduce_all(p1 == p2):
models_equal = False
break
self.assertTrue(models_equal)
# Reset repo
delete_repo(token=self._token, repo_id="test-model-tf")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, use_auth_token=self._token)
new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf")
models_equal = True
for p1, p2 in zip(model.weights, new_model.weights):
if not tf.math.reduce_all(p1 == p2):
models_equal = False
break
self.assertTrue(models_equal)
@is_pt_tf_cross_test
def test_push_to_hub_callback(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = TFBertForMaskedLM(config)
model.compile()
with tempfile.TemporaryDirectory() as tmp_dir:
push_to_hub_callback = PushToHubCallback(
output_dir=tmp_dir,
hub_model_id="test-model-tf-callback",
hub_token=self._token,
)
model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback])
new_model = TFBertForMaskedLM.from_pretrained(f"{USER}/test-model-tf-callback")
models_equal = True
for p1, p2 in zip(model.weights, new_model.weights):
if not tf.math.reduce_all(p1 == p2):
models_equal = False
break
self.assertTrue(models_equal)
tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters)
tf_push_to_hub_params.pop("base_model_card_args")
pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters)
pt_push_to_hub_params.pop("deprecated_kwargs")
self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params)
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = TFBertModel(config)
# Make sure model is properly initialized
model.build()
model.push_to_hub("valid_org/test-model-tf-org", use_auth_token=self._token)
new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
models_equal = True
for p1, p2 in zip(model.weights, new_model.weights):
if not tf.math.reduce_all(p1 == p2):
models_equal = False
break
self.assertTrue(models_equal)
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-tf-org"
)
new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org")
models_equal = True
for p1, p2 in zip(model.weights, new_model.weights):
if not tf.math.reduce_all(p1 == p2):
models_equal = False
break
self.assertTrue(models_equal)
|