Spaces:
Paused
Paused
import unicodedata | |
from dataclasses import dataclass | |
from typing import Optional, Union | |
import numpy as np | |
from transformers.data.data_collator import DataCollatorMixin | |
from transformers.file_utils import PaddingStrategy | |
from transformers.tokenization_utils_base import PreTrainedTokenizerBase | |
def padding_tensor(sequences, padding_value, padding_side, sequence_length): | |
if isinstance(padding_value, tuple): | |
out_tensor = np.full((len(sequences), sequence_length, 2), padding_value) | |
else: | |
out_tensor = np.full((len(sequences), sequence_length), padding_value) | |
for i, tensor in enumerate(sequences): | |
if padding_side == "right": | |
if isinstance(padding_value, tuple): | |
out_tensor[i, : len(tensor[:sequence_length]), :2] = tensor[:sequence_length] | |
else: | |
out_tensor[i, : len(tensor[:sequence_length])] = tensor[:sequence_length] | |
else: | |
if isinstance(padding_value, tuple): | |
out_tensor[i, len(tensor[:sequence_length]) - 1 :, :2] = tensor[:sequence_length] | |
else: | |
out_tensor[i, len(tensor[:sequence_length]) - 1 :] = tensor[:sequence_length] | |
return out_tensor.tolist() | |
def is_punctuation(char): | |
cp = ord(char) | |
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): | |
return True | |
cat = unicodedata.category(char) | |
if cat.startswith("P"): | |
return True | |
return False | |
class DataCollatorForLukeTokenClassification(DataCollatorMixin): | |
""" | |
Data collator that will dynamically pad the inputs received, as well as the labels. | |
Args: | |
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): | |
The tokenizer used for encoding the data. | |
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
different lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
7.5 (Volta). | |
label_pad_token_id (`int`, *optional*, defaults to -100): | |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). | |
return_tensors (`str`): | |
The type of Tensor to return. Allowable values are "np", "pt" and "tf". | |
""" | |
tokenizer: PreTrainedTokenizerBase | |
padding: Union[bool, str, PaddingStrategy] = True | |
max_length: Optional[int] = None | |
pad_to_multiple_of: Optional[int] = None | |
label_pad_token_id: int = -100 | |
return_tensors: str = "pt" | |
def torch_call(self, features): | |
import torch | |
label_name = "label" if "label" in features[0].keys() else "labels" | |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None | |
batch = self.tokenizer.pad( | |
features, | |
padding=self.padding, | |
max_length=self.max_length, | |
pad_to_multiple_of=self.pad_to_multiple_of, | |
# Conversion to tensors will fail if we have labels as they are not of the same length yet. | |
return_tensors="pt" if labels is None else None, | |
) | |
if labels is None: | |
return batch | |
sequence_length = torch.tensor(batch["entity_ids"]).shape[1] | |
padding_side = self.tokenizer.padding_side | |
if padding_side == "right": | |
batch[label_name] = [ | |
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels | |
] | |
else: | |
batch[label_name] = [ | |
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels | |
] | |
ner_tags = [feature["ner_tags"] for feature in features] | |
batch["ner_tags"] = padding_tensor(ner_tags, -1, padding_side, sequence_length) | |
original_entity_spans = [feature["original_entity_spans"] for feature in features] | |
batch["original_entity_spans"] = padding_tensor(original_entity_spans, (-1, -1), padding_side, sequence_length) | |
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} | |
return batch | |