ahassoun's picture
Upload 3018 files
ee6e328
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def padding_tensor(sequences, padding_value, padding_side, sequence_length):
if isinstance(padding_value, tuple):
out_tensor = np.full((len(sequences), sequence_length, 2), padding_value)
else:
out_tensor = np.full((len(sequences), sequence_length), padding_value)
for i, tensor in enumerate(sequences):
if padding_side == "right":
if isinstance(padding_value, tuple):
out_tensor[i, : len(tensor[:sequence_length]), :2] = tensor[:sequence_length]
else:
out_tensor[i, : len(tensor[:sequence_length])] = tensor[:sequence_length]
else:
if isinstance(padding_value, tuple):
out_tensor[i, len(tensor[:sequence_length]) - 1 :, :2] = tensor[:sequence_length]
else:
out_tensor[i, len(tensor[:sequence_length]) - 1 :] = tensor[:sequence_length]
return out_tensor.tolist()
def is_punctuation(char):
cp = ord(char)
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
@dataclass
class DataCollatorForLukeTokenClassification(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
import torch
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if labels is None:
return batch
sequence_length = torch.tensor(batch["entity_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch[label_name] = [
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
]
ner_tags = [feature["ner_tags"] for feature in features]
batch["ner_tags"] = padding_tensor(ner_tags, -1, padding_side, sequence_length)
original_entity_spans = [feature["original_entity_spans"] for feature in features]
batch["original_entity_spans"] = padding_tensor(original_entity_spans, (-1, -1), padding_side, sequence_length)
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
return batch