Spaces:
Paused
Paused
# Parts of the code are adapted from the snippets provided in the TorchAudio Wav2Vec forced alignment tutorial. | |
# The full tutorial can be found here: https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html | |
import argparse | |
import os | |
from dataclasses import dataclass | |
import torch | |
import torchaudio | |
from tqdm import tqdm | |
from transformers import AutoConfig, AutoModelForCTC, AutoProcessor | |
class Wav2Vec2Aligner: | |
def __init__(self, model_name, input_wavs_sr, cuda): | |
self.cuda = cuda | |
self.config = AutoConfig.from_pretrained(model_name) | |
self.model = AutoModelForCTC.from_pretrained(model_name) | |
self.model.eval() | |
if self.cuda: | |
self.model.to(device="cuda") | |
self.processor = AutoProcessor.from_pretrained(model_name) | |
self.resampler = torchaudio.transforms.Resample(input_wavs_sr, 16_000) | |
blank_id = 0 | |
vocab = list(self.processor.tokenizer.get_vocab().keys()) | |
for i in range(len(vocab)): | |
if vocab[i] == "[PAD]" or vocab[i] == "<pad>": | |
blank_id = i | |
print("Blank Token id [PAD]/<pad>", blank_id) | |
self.blank_id = blank_id | |
def speech_file_to_array_fn(self, wav_path): | |
speech_array, sampling_rate = torchaudio.load(wav_path) | |
speech = self.resampler(speech_array).squeeze().numpy() | |
return speech | |
def align_single_sample(self, item): | |
blank_id = self.blank_id | |
transcript = "|".join(item["sent"].split(" ")) | |
if not os.path.isfile(item["wav_path"]): | |
print(item["wav_path"], "not found in wavs directory") | |
speech_array = self.speech_file_to_array_fn(item["wav_path"]) | |
inputs = self.processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) | |
if self.cuda: | |
inputs = inputs.to(device="cuda") | |
with torch.no_grad(): | |
logits = self.model(inputs.input_values).logits | |
# get the emission probability at frame level | |
emissions = torch.log_softmax(logits, dim=-1) | |
emission = emissions[0].cpu().detach() | |
# get labels from vocab | |
labels = ([""] + list(self.processor.tokenizer.get_vocab().keys()))[ | |
:-1 | |
] # logits don't align with the tokenizer's vocab | |
dictionary = {c: i for i, c in enumerate(labels)} | |
tokens = [] | |
for c in transcript: | |
if c in dictionary: | |
tokens.append(dictionary[c]) | |
def get_trellis(emission, tokens, blank_id=0): | |
""" | |
Build a trellis matrix of shape (num_frames + 1, num_tokens + 1) | |
that represents the probabilities of each source token being at a certain time step | |
""" | |
num_frames = emission.size(0) | |
num_tokens = len(tokens) | |
# Trellis has extra diemsions for both time axis and tokens. | |
# The extra dim for tokens represents <SoS> (start-of-sentence) | |
# The extra dim for time axis is for simplification of the code. | |
trellis = torch.full((num_frames + 1, num_tokens + 1), -float("inf")) | |
trellis[:, 0] = 0 | |
for t in range(num_frames): | |
trellis[t + 1, 1:] = torch.maximum( | |
# Score for staying at the same token | |
trellis[t, 1:] + emission[t, blank_id], | |
# Score for changing to the next token | |
trellis[t, :-1] + emission[t, tokens], | |
) | |
return trellis | |
trellis = get_trellis(emission, tokens, blank_id) | |
class Point: | |
token_index: int | |
time_index: int | |
score: float | |
def backtrack(trellis, emission, tokens, blank_id=0): | |
""" | |
Walk backwards from the last (sentence_token, time_step) pair to build the optimal sequence alignment path | |
""" | |
# Note: | |
# j and t are indices for trellis, which has extra dimensions | |
# for time and tokens at the beginning. | |
# When referring to time frame index `T` in trellis, | |
# the corresponding index in emission is `T-1`. | |
# Similarly, when referring to token index `J` in trellis, | |
# the corresponding index in transcript is `J-1`. | |
j = trellis.size(1) - 1 | |
t_start = torch.argmax(trellis[:, j]).item() | |
path = [] | |
for t in range(t_start, 0, -1): | |
# 1. Figure out if the current position was stay or change | |
# Note (again): | |
# `emission[J-1]` is the emission at time frame `J` of trellis dimension. | |
# Score for token staying the same from time frame J-1 to T. | |
stayed = trellis[t - 1, j] + emission[t - 1, blank_id] | |
# Score for token changing from C-1 at T-1 to J at T. | |
changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]] | |
# 2. Store the path with frame-wise probability. | |
prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item() | |
# Return token index and time index in non-trellis coordinate. | |
path.append(Point(j - 1, t - 1, prob)) | |
# 3. Update the token | |
if changed > stayed: | |
j -= 1 | |
if j == 0: | |
break | |
else: | |
raise ValueError("Failed to align") | |
return path[::-1] | |
path = backtrack(trellis, emission, tokens, blank_id) | |
class Segment: | |
label: str | |
start: int | |
end: int | |
score: float | |
def __repr__(self): | |
return f"{self.label}\t{self.score:4.2f}\t{self.start*20:5d}\t{self.end*20:5d}" | |
def length(self): | |
return self.end - self.start | |
def merge_repeats(path): | |
""" | |
Merge repeated tokens into a single segment. Note: this shouldn't affect repeated characters from the | |
original sentences (e.g. `ll` in `hello`) | |
""" | |
i1, i2 = 0, 0 | |
segments = [] | |
while i1 < len(path): | |
while i2 < len(path) and path[i1].token_index == path[i2].token_index: | |
i2 += 1 | |
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1) | |
segments.append( | |
Segment( | |
transcript[path[i1].token_index], | |
path[i1].time_index, | |
path[i2 - 1].time_index + 1, | |
score, | |
) | |
) | |
i1 = i2 | |
return segments | |
segments = merge_repeats(path) | |
with open(item["out_path"], "w") as out_align: | |
for seg in segments: | |
out_align.write(str(seg) + "\n") | |
def align_data(self, wav_dir, text_file, output_dir): | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# load text file | |
lines = open(text_file, encoding="utf8").readlines() | |
items = [] | |
for line in lines: | |
if len(line.strip().split("\t")) != 2: | |
print("Script must be in format: 00001 this is my sentence") | |
exit() | |
wav_name, sentence = line.strip().split("\t") | |
wav_path = os.path.join(wav_dir, wav_name + ".wav") | |
out_path = os.path.join(output_dir, wav_name + ".txt") | |
items.append({"sent": sentence, "wav_path": wav_path, "out_path": out_path}) | |
print("Number of samples found in script file", len(items)) | |
for item in tqdm(items): | |
self.align_single_sample(item) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_name", type=str, default="arijitx/wav2vec2-xls-r-300m-bengali", help="wav2vec model name" | |
) | |
parser.add_argument("--wav_dir", type=str, default="./wavs", help="directory containing wavs") | |
parser.add_argument("--text_file", type=str, default="script.txt", help="file containing text") | |
parser.add_argument("--input_wavs_sr", type=int, default=16000, help="sampling rate of input audios") | |
parser.add_argument( | |
"--output_dir", type=str, default="./out_alignment", help="output directory containing the alignment files" | |
) | |
parser.add_argument("--cuda", action="store_true") | |
args = parser.parse_args() | |
aligner = Wav2Vec2Aligner(args.model_name, args.input_wavs_sr, args.cuda) | |
aligner.align_data(args.wav_dir, args.text_file, args.output_dir) | |
if __name__ == "__main__": | |
main() | |