Spaces:
Paused
Paused
#!/usr/bin/env python3 | |
import logging | |
import pathlib | |
import re | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Any, Callable, Dict, List, Optional, Set, Union | |
import datasets | |
import librosa | |
import numpy as np | |
import torch | |
from lang_trans import arabic | |
from packaging import version | |
from torch import nn | |
from transformers import ( | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
Wav2Vec2CTCTokenizer, | |
Wav2Vec2FeatureExtractor, | |
Wav2Vec2ForCTC, | |
Wav2Vec2Processor, | |
is_apex_available, | |
trainer_utils, | |
) | |
if is_apex_available(): | |
from apex import amp | |
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): | |
_is_native_amp_available = True | |
from torch.cuda.amp import autocast | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
) | |
freeze_feature_extractor: Optional[bool] = field( | |
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | |
) | |
verbose_logging: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Whether to log verbose messages or not."}, | |
) | |
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments): | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logging_level = logging.WARNING | |
if model_args.verbose_logging: | |
logging_level = logging.DEBUG | |
elif trainer_utils.is_main_process(training_args.local_rank): | |
logging_level = logging.INFO | |
logger.setLevel(logging_level) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class | |
into argparse arguments to be able to specify them on | |
the command line. | |
""" | |
dataset_name: str = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
train_split_name: Optional[str] = field( | |
default="train", | |
metadata={ | |
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | |
}, | |
) | |
validation_split_name: Optional[str] = field( | |
default="validation", | |
metadata={ | |
"help": ( | |
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" | |
) | |
}, | |
) | |
target_text_column: Optional[str] = field( | |
default="text", | |
metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"}, | |
) | |
speech_file_column: Optional[str] = field( | |
default="file", | |
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"}, | |
) | |
target_feature_extractor_sampling_rate: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."}, | |
) | |
max_duration_in_seconds: Optional[float] = field( | |
default=None, | |
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."}, | |
) | |
orthography: Optional[str] = field( | |
default="librispeech", | |
metadata={ | |
"help": ( | |
"Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or" | |
" 'buckwalter'." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
class Orthography: | |
""" | |
Orthography scheme used for text normalization and tokenization. | |
Args: | |
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to accept lowercase input and lowercase the output when decoding. | |
vocab_file (:obj:`str`, `optional`): | |
File containing the vocabulary. | |
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`): | |
The token used for delimiting words; it needs to be in the vocabulary. | |
translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`): | |
Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " "). | |
words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`): | |
Words to remove when preprocessing text (e.g., "sil"). | |
untransliterator (:obj:`Callable[[str], str]`, `optional`): | |
Function that untransliterates text back into native writing system. | |
""" | |
do_lower_case: bool = False | |
vocab_file: Optional[str] = None | |
word_delimiter_token: Optional[str] = "|" | |
translation_table: Optional[Dict[str, str]] = field(default_factory=dict) | |
words_to_remove: Optional[Set[str]] = field(default_factory=set) | |
untransliterator: Optional[Callable[[str], str]] = None | |
def from_name(cls, name: str): | |
if name == "librispeech": | |
return cls() | |
if name == "timit": | |
return cls( | |
do_lower_case=True, | |
# break compounds like "quarter-century-old" and replace pauses "--" | |
translation_table=str.maketrans({"-": " "}), | |
) | |
if name == "buckwalter": | |
translation_table = { | |
"-": " ", # sometimes used to represent pauses | |
"^": "v", # fixing "tha" in arabic_speech_corpus dataset | |
} | |
return cls( | |
vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"), | |
word_delimiter_token="/", # "|" is Arabic letter alef with madda above | |
translation_table=str.maketrans(translation_table), | |
words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset | |
untransliterator=arabic.buckwalter.untransliterate, | |
) | |
raise ValueError(f"Unsupported orthography: '{name}'.") | |
def preprocess_for_training(self, text: str) -> str: | |
# TODO(elgeish) return a pipeline (e.g., from jiwer) instead? Or rely on branch predictor as is | |
if len(self.translation_table) > 0: | |
text = text.translate(self.translation_table) | |
if len(self.words_to_remove) == 0: | |
text = " ".join(text.split()) # clean up whitespaces | |
else: | |
text = " ".join(w for w in text.split() if w not in self.words_to_remove) # and clean up whilespaces | |
return text | |
def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor: | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
model_args.model_name_or_path, cache_dir=model_args.cache_dir | |
) | |
if self.vocab_file: | |
tokenizer = Wav2Vec2CTCTokenizer( | |
self.vocab_file, | |
cache_dir=model_args.cache_dir, | |
do_lower_case=self.do_lower_case, | |
word_delimiter_token=self.word_delimiter_token, | |
) | |
else: | |
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
do_lower_case=self.do_lower_case, | |
word_delimiter_token=self.word_delimiter_token, | |
) | |
return Wav2Vec2Processor(feature_extractor, tokenizer) | |
class DataCollatorCTCWithPadding: | |
""" | |
Data collator that will dynamically pad the inputs received. | |
Args: | |
processor (:class:`~transformers.Wav2Vec2Processor`) | |
The processor used for proccessing the data. | |
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
among: | |
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. | |
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
different lengths). | |
max_length (:obj:`int`, `optional`): | |
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | |
max_length_labels (:obj:`int`, `optional`): | |
Maximum length of the ``labels`` returned list and optionally padding length (see above). | |
pad_to_multiple_of (:obj:`int`, `optional`): | |
If set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
7.5 (Volta). | |
""" | |
processor: Wav2Vec2Processor | |
padding: Union[bool, str] = True | |
max_length: Optional[int] = None | |
max_length_labels: Optional[int] = None | |
pad_to_multiple_of: Optional[int] = None | |
pad_to_multiple_of_labels: Optional[int] = None | |
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
# split inputs and labels since they have to be of different lengths and need | |
# different padding methods | |
input_features = [{"input_values": feature["input_values"]} for feature in features] | |
label_features = [{"input_ids": feature["labels"]} for feature in features] | |
batch = self.processor.pad( | |
input_features, | |
padding=self.padding, | |
max_length=self.max_length, | |
pad_to_multiple_of=self.pad_to_multiple_of, | |
return_tensors="pt", | |
) | |
labels_batch = self.processor.pad( | |
labels=label_features, | |
padding=self.padding, | |
max_length=self.max_length_labels, | |
pad_to_multiple_of=self.pad_to_multiple_of_labels, | |
return_tensors="pt", | |
) | |
# replace padding with -100 to ignore loss correctly | |
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | |
batch["labels"] = labels | |
return batch | |
class CTCTrainer(Trainer): | |
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: | |
""" | |
Perform a training step on a batch of inputs. | |
Subclass and override to inject custom behavior. | |
Args: | |
model (:obj:`nn.Module`): | |
The model to train. | |
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): | |
The inputs and targets of the model. | |
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
argument :obj:`labels`. Check your model's documentation for all accepted arguments. | |
Return: | |
:obj:`torch.Tensor`: The tensor with training loss on this batch. | |
""" | |
model.train() | |
inputs = self._prepare_inputs(inputs) | |
if self.use_amp: | |
with autocast(): | |
loss = self.compute_loss(model, inputs) | |
else: | |
loss = self.compute_loss(model, inputs) | |
if self.args.n_gpu > 1: | |
if model.module.config.ctc_loss_reduction == "mean": | |
loss = loss.mean() | |
elif model.module.config.ctc_loss_reduction == "sum": | |
loss = loss.sum() / (inputs["labels"] >= 0).sum() | |
else: | |
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") | |
if self.args.gradient_accumulation_steps > 1: | |
loss = loss / self.args.gradient_accumulation_steps | |
if self.use_amp: | |
self.scaler.scale(loss).backward() | |
elif self.use_apex: | |
with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
scaled_loss.backward() | |
elif self.deepspeed: | |
self.deepspeed.backward(loss) | |
else: | |
loss.backward() | |
return loss.detach() | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
configure_logger(model_args, training_args) | |
orthography = Orthography.from_name(data_args.orthography.lower()) | |
processor = orthography.create_processor(model_args) | |
model = Wav2Vec2ForCTC.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
gradient_checkpointing=training_args.gradient_checkpointing, | |
vocab_size=len(processor.tokenizer), | |
) | |
train_dataset = datasets.load_dataset( | |
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name | |
) | |
val_dataset = datasets.load_dataset( | |
data_args.dataset_name, data_args.dataset_config_name, split=data_args.validation_split_name | |
) | |
wer_metric = datasets.load_metric("wer") | |
target_sr = processor.feature_extractor.sampling_rate if data_args.target_feature_extractor_sampling_rate else None | |
vocabulary_chars_str = "".join(t for t in processor.tokenizer.get_vocab().keys() if len(t) == 1) | |
vocabulary_text_cleaner = re.compile( # remove characters not in vocabulary | |
rf"[^\s{re.escape(vocabulary_chars_str)}]", # allow space in addition to chars in vocabulary | |
flags=re.IGNORECASE if processor.tokenizer.do_lower_case else 0, | |
) | |
text_updates = [] | |
def prepare_example(example): # TODO(elgeish) make use of multiprocessing? | |
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr) | |
if data_args.max_duration_in_seconds is not None: | |
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"] | |
# Normalize and clean up text; order matters! | |
updated_text = orthography.preprocess_for_training(example[data_args.target_text_column]) | |
updated_text = vocabulary_text_cleaner.sub("", updated_text) | |
if updated_text != example[data_args.target_text_column]: | |
text_updates.append((example[data_args.target_text_column], updated_text)) | |
example[data_args.target_text_column] = updated_text | |
return example | |
train_dataset = train_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) | |
val_dataset = val_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) | |
if data_args.max_duration_in_seconds is not None: | |
def filter_by_max_duration(example): | |
return example["duration_in_seconds"] <= data_args.max_duration_in_seconds | |
old_train_size = len(train_dataset) | |
old_val_size = len(val_dataset) | |
train_dataset = train_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) | |
val_dataset = val_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) | |
if len(train_dataset) > old_train_size: | |
logger.warning( | |
f"Filtered out {len(train_dataset) - old_train_size} train example(s) longer than" | |
f" {data_args.max_duration_in_seconds} second(s)." | |
) | |
if len(val_dataset) > old_val_size: | |
logger.warning( | |
f"Filtered out {len(val_dataset) - old_val_size} validation example(s) longer than" | |
f" {data_args.max_duration_in_seconds} second(s)." | |
) | |
logger.info(f"Split sizes: {len(train_dataset)} train and {len(val_dataset)} validation.") | |
logger.warning(f"Updated {len(text_updates)} transcript(s) using '{data_args.orthography}' orthography rules.") | |
if logger.isEnabledFor(logging.DEBUG): | |
for original_text, updated_text in text_updates: | |
logger.debug(f'Updated text: "{original_text}" -> "{updated_text}"') | |
text_updates = None | |
def prepare_dataset(batch): | |
# check that all files have the correct sampling rate | |
assert ( | |
len(set(batch["sampling_rate"])) == 1 | |
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." | |
processed_batch = processor( | |
audio=batch["speech"], text=batch[data_args.target_text_column], sampling_rate=batch["sampling_rate"][0] | |
) | |
batch.update(processed_batch) | |
return batch | |
train_dataset = train_dataset.map( | |
prepare_dataset, | |
batch_size=training_args.per_device_train_batch_size, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
val_dataset = val_dataset.map( | |
prepare_dataset, | |
batch_size=training_args.per_device_train_batch_size, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
) | |
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) | |
def compute_metrics(pred): | |
pred_logits = pred.predictions | |
pred_ids = np.argmax(pred_logits, axis=-1) | |
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id | |
pred_str = processor.batch_decode(pred_ids) | |
# we do not want to group tokens when computing the metrics | |
label_str = processor.batch_decode(pred.label_ids, group_tokens=False) | |
if logger.isEnabledFor(logging.DEBUG): | |
for reference, predicted in zip(label_str, pred_str): | |
logger.debug(f'reference: "{reference}"') | |
logger.debug(f'predicted: "{predicted}"') | |
if orthography.untransliterator is not None: | |
logger.debug(f'reference (untransliterated): "{orthography.untransliterator(reference)}"') | |
logger.debug(f'predicted (untransliterated): "{orthography.untransliterator(predicted)}"') | |
wer = wer_metric.compute(predictions=pred_str, references=label_str) | |
return {"wer": wer} | |
if model_args.freeze_feature_extractor: | |
model.freeze_feature_extractor() | |
trainer = CTCTrainer( | |
model=model, | |
data_collator=data_collator, | |
args=training_args, | |
compute_metrics=compute_metrics, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset, | |
tokenizer=processor.feature_extractor, | |
) | |
trainer.train() | |
if __name__ == "__main__": | |
main() | |