Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import unittest | |
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer | |
from transformers.testing_utils import slow | |
from ...test_tokenization_common import TokenizerTesterMixin | |
class BioGptTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = BioGptTokenizer | |
test_rust_tokenizer = False | |
def setUp(self): | |
super().setUp() | |
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
vocab = [ | |
"l", | |
"o", | |
"w", | |
"e", | |
"r", | |
"s", | |
"t", | |
"i", | |
"d", | |
"n", | |
"w</w>", | |
"r</w>", | |
"t</w>", | |
"lo", | |
"low", | |
"er</w>", | |
"low</w>", | |
"lowest</w>", | |
"newer</w>", | |
"wider</w>", | |
"<unk>", | |
] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
with open(self.vocab_file, "w") as fp: | |
fp.write(json.dumps(vocab_tokens)) | |
with open(self.merges_file, "w") as fp: | |
fp.write("\n".join(merges)) | |
def get_input_output_texts(self, tokenizer): | |
input_text = "lower newer" | |
output_text = "lower newer" | |
return input_text, output_text | |
def test_full_tokenizer(self): | |
"""Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" | |
tokenizer = BioGptTokenizer(self.vocab_file, self.merges_file) | |
text = "lower" | |
bpe_tokens = ["low", "er</w>"] | |
tokens = tokenizer.tokenize(text) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + ["<unk>"] | |
input_bpe_tokens = [14, 15, 20] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def test_sequence_builders(self): | |
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") | |
text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
self.assertTrue(encoded_sentence == [2] + text) | |
self.assertTrue(encoded_pair == [2] + text + [2] + text_2) | |