Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2022 Meta Platforms authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch FLAVA model. """ | |
import inspect | |
import os | |
import random | |
import tempfile | |
import unittest | |
import numpy as np | |
import requests | |
from transformers import ( | |
FlavaConfig, | |
FlavaImageCodebookConfig, | |
FlavaImageConfig, | |
FlavaMultimodalConfig, | |
FlavaTextConfig, | |
) | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
FlavaForPreTraining, | |
FlavaImageCodebook, | |
FlavaImageModel, | |
FlavaModel, | |
FlavaMultimodalModel, | |
FlavaTextModel, | |
) | |
from transformers.models.flava.modeling_flava import ( | |
FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST, | |
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
) | |
else: | |
FlavaModel = None | |
FlavaForPreTraining = None | |
torch = {} | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import FlavaProcessor | |
class FlavaImageModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
qkv_bias=True, | |
mask_token=True, | |
vocab_size=99, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.qkv_bias = qkv_bias | |
self.mask_token = mask_token | |
self.vocab_size = vocab_size | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
num_patches = self.image_size // self.patch_size | |
bool_masked_pos = ( | |
torch.rand((self.batch_size, num_patches, num_patches), device=pixel_values.device) < 0.9 | |
).long() | |
config = self.get_config() | |
return config, pixel_values, bool_masked_pos | |
def get_config(self): | |
return FlavaImageConfig( | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
qkv_bias=self.qkv_bias, | |
mask_token=self.mask_token, | |
vocab_size=self.vocab_size, | |
) | |
def create_and_check_model(self, config, pixel_values, bool_masked_pos): | |
model = FlavaImageModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(pixel_values, bool_masked_pos) | |
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.image_size, self.image_size) | |
patch_size = (self.patch_size, self.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, bool_masked_pos = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos} | |
return config, inputs_dict | |
class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as FLAVA does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (FlavaImageModel,) if is_torch_available() else () | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = FlavaImageModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FlavaImageConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
# FLAVA does not use inputs_embeds | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
# in FLAVA, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_len = num_patches + 1 | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
# FLAVA has a different seq_length | |
image_size = (self.model_tester.image_size, self.model_tester.image_size) | |
patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
seq_length = num_patches + 1 | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
# skip this test as FlavaImageModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# skip this test as FlavaImageModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlavaImageModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FlavaTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
vocab_size=102, | |
type_vocab_size=2, | |
max_position_embeddings=512, | |
position_embedding_type="absolute", | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
qkv_bias=True, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.seq_length = seq_length | |
self.vocab_size = vocab_size | |
self.type_vocab_size = type_vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.position_embedding_type = position_embedding_type | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.qkv_bias = qkv_bias | |
self.pad_token_id = pad_token_id | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask | |
def get_config(self): | |
return FlavaTextConfig( | |
vocab_size=self.vocab_size, | |
type_vocab_size=self.type_vocab_size, | |
max_position_embeddings=self.max_position_embeddings, | |
position_embedding_type=self.position_embedding_type, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
pad_token_id=self.pad_token_id, | |
qkv_bias=self.qkv_bias, | |
) | |
def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): | |
model = FlavaTextModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, token_type_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlavaTextModel,) if is_torch_available() else () | |
test_pruning = False | |
test_head_masking = False | |
test_torchscript = False | |
def setUp(self): | |
self.model_tester = FlavaTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FlavaTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
# FLAVA does not use inputs_embeds | |
pass | |
# skip this test as FlavaTextModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# skip this test as FlavaTextModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlavaTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FlavaMultimodalModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=44, | |
use_input_mask=True, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
qkv_bias=True, | |
ce_ignore_index=-100, | |
use_cls_token=True, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.use_input_mask = use_input_mask | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.qkv_bias = qkv_bias | |
self.ce_ignore_index = ce_ignore_index | |
self.use_cls_token = use_cls_token | |
def prepare_config_and_inputs(self): | |
hidden_states = floats_tensor([self.batch_size, self.seq_length - 1, self.hidden_size]) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = self.get_config() | |
return config, hidden_states, input_mask | |
def get_config(self): | |
return FlavaMultimodalConfig( | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
qkv_bias=self.qkv_bias, | |
use_cls_token=self.use_cls_token, | |
ce_ignore_index=self.ce_ignore_index, | |
) | |
def create_and_check_model(self, config, hidden_states, input_mask): | |
model = FlavaMultimodalModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(hidden_states, attention_mask=input_mask) | |
result = model(hidden_states) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, hidden_states, input_mask = config_and_inputs | |
inputs_dict = {"hidden_states": hidden_states, "attention_mask": input_mask} | |
return config, inputs_dict | |
class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlavaMultimodalModel,) if is_torch_available() else () | |
test_pruning = False | |
test_head_masking = False | |
test_resize_embeddings = False | |
test_torchscript = False | |
def setUp(self): | |
self.model_tester = FlavaMultimodalModelTester(self) | |
self.config_tester = ConfigTester( | |
self, config_class=FlavaMultimodalConfig, has_text_modality=False, hidden_size=37 | |
) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["hidden_states"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model_common_attributes(self): | |
# No embedding in multimodal model | |
pass | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
# FLAVA does not use inputs_embeds | |
pass | |
# skip this test as FlavaMultimodalModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# skip this test as FlavaMultimodalModel has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlavaMultimodalModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FlavaImageCodebookTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=112, | |
num_channels=3, | |
hidden_size=32, | |
num_groups=2, | |
vocab_size=99, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.hidden_size = hidden_size | |
self.num_groups = num_groups | |
self.vocab_size = vocab_size | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, pixel_values | |
def get_config(self): | |
return FlavaImageCodebookConfig( | |
hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size | |
) | |
def create_and_check_model(self, config, pixel_values): | |
model = FlavaImageCodebook(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.shape, (self.batch_size, config.vocab_size, self.image_size // 8, self.image_size // 8) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlavaImageCodebook,) if is_torch_available() else () | |
test_pruning = False | |
test_head_masking = False | |
test_resize_embeddings = False | |
test_torchscript = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = FlavaImageCodebookTester(self) | |
self.config_tester = ConfigTester(self, config_class=FlavaImageCodebookConfig, has_text_modality=False) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_attention_outputs(self): | |
pass | |
def test_model_common_attributes(self): | |
# No embedding in multimodal model | |
pass | |
def test_training(self): | |
pass | |
def test_hidden_states_output(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
# no attentions | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
# FLAVA does not use inputs_embeds | |
pass | |
def test_model_outputs_equivalence(self): | |
pass | |
# skip this test as FlavaImageCodebook has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# skip this test as FlavaImageCodebook has no base class and is | |
# not available in MODEL_MAPPING | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlavaImageCodebook.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FlavaModelTester: | |
model_class = FlavaModel | |
def __init__( | |
self, | |
parent, | |
text_kwargs=None, | |
image_kwargs=None, | |
multimodal_kwargs=None, | |
image_codebook_kwargs=None, | |
is_training=True, | |
hidden_size=32, | |
projection_dim=32, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
): | |
if text_kwargs is None: | |
text_kwargs = {} | |
if image_kwargs is None: | |
image_kwargs = {} | |
if multimodal_kwargs is None: | |
multimodal_kwargs = {} | |
if image_codebook_kwargs is None: | |
image_codebook_kwargs = {} | |
self.parent = parent | |
self.image_model_tester = FlavaImageModelTester(parent, **image_kwargs) | |
self.text_model_tester = FlavaTextModelTester(parent, **text_kwargs) | |
self.multimodal_model_tester = FlavaMultimodalModelTester(parent, **multimodal_kwargs) | |
self.image_codebook_tester = FlavaImageCodebookTester(parent, **image_codebook_kwargs) | |
self.is_training = is_training | |
self.config_tester = ConfigTester(self, config_class=FlavaConfig, hidden_size=37) | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def prepare_config_and_inputs_for_common(self): | |
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() | |
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
config = self.get_config() | |
return config, { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"bool_masked_pos": bool_masked_pos, | |
} | |
def get_config(self): | |
return FlavaConfig.from_configs( | |
self.image_model_tester.get_config(), | |
self.text_model_tester.get_config(), | |
self.multimodal_model_tester.get_config(), | |
self.image_codebook_tester.get_config(), | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
) | |
def create_and_check_model(self, config, inputs): | |
self._test_model(config, inputs, test_image=True) | |
self._test_model(config, inputs, test_text=True) | |
self._test_model(config, inputs, test_image=True, test_text=True) | |
def _test_model(self, config, inputs, test_image=False, test_text=False): | |
model = self.model_class(config).to(torch_device).eval() | |
with torch.no_grad(): | |
result = model( | |
input_ids=inputs["input_ids"] if test_text else None, | |
attention_mask=inputs["attention_mask"] if test_text else None, | |
token_type_ids=inputs["token_type_ids"] if test_text else None, | |
pixel_values=inputs["pixel_values"] if test_image else None, | |
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, | |
) | |
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) | |
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
if test_image: | |
self.parent.assertEqual( | |
result.image_embeddings.shape, | |
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), | |
) | |
else: | |
self.parent.assertIsNone(result.image_embeddings) | |
if test_text: | |
self.parent.assertEqual( | |
result.text_embeddings.shape, | |
( | |
self.text_model_tester.batch_size, | |
self.text_model_tester.seq_length, | |
self.text_model_tester.hidden_size, | |
), | |
) | |
else: | |
self.parent.assertIsNone(result.text_embeddings) | |
if test_image and test_text: | |
self.parent.assertEqual( | |
result.multimodal_embeddings.shape, | |
( | |
self.multimodal_model_tester.batch_size, | |
self.text_model_tester.seq_length + num_patches + 2, | |
self.multimodal_model_tester.hidden_size, | |
), | |
) | |
else: | |
self.parent.assertIsNone(result.multimodal_embeddings) | |
class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (FlavaModel,) if is_torch_available() else () | |
pipeline_model_mapping = {"feature-extraction": FlavaModel} if is_torch_available() else {} | |
class_for_tester = FlavaModelTester | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_attention_outputs = False | |
def setUp(self): | |
self.model_tester = self.class_for_tester(self) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
# hidden_states are tested in individual model tests | |
def test_hidden_states_output(self): | |
pass | |
# input_embeds are tested in individual model tests | |
def test_inputs_embeds(self): | |
pass | |
# tested in individual model tests | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
# FlavaModel does not have input/output embeddings | |
def test_model_common_attributes(self): | |
pass | |
# override as the `logit_scale` parameter initilization is different for FLAVA | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
# check if `logit_scale` is initilized as per the original implementation | |
if name == "logit_scale" or name == "flava.logit_scale": | |
self.assertAlmostEqual( | |
param.data.item(), | |
np.log(1 / 0.07), | |
delta=1e-3, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def _create_and_check_torchscript(self, config, inputs_dict): | |
if not self.test_torchscript: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.torchscript = True | |
configs_no_init.return_dict = False | |
configs_no_init.return_loss = False | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
try: | |
input_ids = inputs_dict["input_ids"] | |
pixel_values = inputs_dict["pixel_values"] # FLAVA needs pixel_values | |
if "input_ids_masked" in inputs_dict: | |
# For pretraining | |
inputs = (input_ids, inputs_dict["input_ids_masked"], pixel_values) | |
else: | |
inputs = (input_ids, pixel_values) | |
traced_model = torch.jit.trace(model, inputs) | |
except RuntimeError: | |
self.fail("Couldn't trace module.") | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
try: | |
torch.jit.save(traced_model, pt_file_name) | |
except Exception: | |
self.fail("Couldn't save module.") | |
try: | |
loaded_model = torch.jit.load(pt_file_name) | |
except Exception: | |
self.fail("Couldn't load module.") | |
model.to(torch_device) | |
model.eval() | |
loaded_model.to(torch_device) | |
loaded_model.eval() | |
model_state_dict = model.state_dict() | |
loaded_model_state_dict = loaded_model.state_dict() | |
# Non persistent buffers won't be in original state dict | |
loaded_model_state_dict.pop("text_model.embeddings.token_type_ids", None) | |
non_persistent_buffers = {} | |
for key in loaded_model_state_dict.keys(): | |
if key not in model_state_dict.keys(): | |
non_persistent_buffers[key] = loaded_model_state_dict[key] | |
loaded_model_state_dict = { | |
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers | |
} | |
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
model_buffers = list(model.buffers()) | |
for non_persistent_buffer in non_persistent_buffers.values(): | |
found_buffer = False | |
for i, model_buffer in enumerate(model_buffers): | |
if torch.equal(non_persistent_buffer, model_buffer): | |
found_buffer = True | |
break | |
self.assertTrue(found_buffer) | |
model_buffers.pop(i) | |
models_equal = True | |
for layer_name, p1 in model_state_dict.items(): | |
p2 = loaded_model_state_dict[layer_name] | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_load_image_text_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Save FlavaConfig and check if we can load FlavaImageConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
image_config = FlavaImageConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.image_config.to_dict(), image_config.to_dict()) | |
# Save FlavaConfig and check if we can load FlavaTextConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
text_config = FlavaTextConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
# Save FlavaConfig and check if we can load FlavaMultimodalConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
multimodal_config = FlavaMultimodalConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.multimodal_config.to_dict(), multimodal_config.to_dict()) | |
# overwrite from common since FlavaModel/TFFlavaModel return FLAVAOutput/TFFLAVAOutput | |
def test_model_from_pretrained(self): | |
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FlavaModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FlavaForPreTrainingTester(FlavaModelTester): | |
model_class = FlavaForPreTraining | |
def prepare_config_and_inputs_for_common(self): | |
_, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() | |
_, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
config = self.get_config() | |
input_ids_masked = input_ids.detach().clone() | |
input_ids_masked[:, 1:3] = 100 | |
mlm_labels = input_ids.detach().clone() | |
mlm_labels[:, :] = config.ce_ignore_index | |
mlm_labels[:, 1:3] = input_ids[:, 1:3] | |
mim_labels = torch.randint( | |
0, self.image_model_tester.vocab_size, bool_masked_pos.size(), device=bool_masked_pos.device | |
).long() | |
mim_labels[bool_masked_pos.ne(True)] = config.ce_ignore_index | |
itm_labels = torch.ones(mlm_labels.size(0), device=bool_masked_pos.device).long() | |
return config, { | |
"input_ids": input_ids, | |
"input_ids_masked": input_ids_masked, | |
"token_type_ids": token_type_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"bool_masked_pos": bool_masked_pos, | |
"mlm_labels": mlm_labels, | |
"mim_labels": mim_labels, | |
"itm_labels": itm_labels, | |
"return_loss": True, | |
} | |
def _test_model(self, config, inputs, test_image=False, test_text=False): | |
model = self.model_class(config).to(torch_device).eval() | |
with torch.no_grad(): | |
result = model( | |
input_ids=inputs["input_ids"] if test_text else None, | |
input_ids_masked=inputs["input_ids_masked"] if test_text else None, | |
attention_mask=inputs["attention_mask"] if test_text else None, | |
token_type_ids=inputs["token_type_ids"] if test_text else None, | |
pixel_values=inputs["pixel_values"] if test_image else None, | |
bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, | |
mlm_labels=inputs["mlm_labels"], | |
mim_labels=inputs["mim_labels"], | |
itm_labels=inputs["itm_labels"], | |
return_loss=inputs["return_loss"], | |
) | |
image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) | |
patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
if test_image: | |
self.parent.assertEqual( | |
result.image_embeddings.shape, | |
(self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), | |
) | |
if not test_text: | |
self.parent.assertEqual( | |
result.loss_info.mim.dim(), | |
0, | |
) | |
self.parent.assertEqual( | |
result.mim_logits.shape, | |
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), | |
) | |
else: | |
self.parent.assertIsNone(result.image_embeddings) | |
if test_text: | |
self.parent.assertEqual( | |
result.text_embeddings.shape, | |
( | |
self.text_model_tester.batch_size, | |
self.text_model_tester.seq_length, | |
self.text_model_tester.hidden_size, | |
), | |
) | |
if not test_image: | |
self.parent.assertEqual(result.loss_info.mlm.dim(), 0) | |
self.parent.assertEqual( | |
result.mlm_logits.shape, | |
( | |
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), | |
self.text_model_tester.vocab_size, | |
), | |
) | |
else: | |
self.parent.assertIsNone(result.text_embeddings) | |
if test_image and test_text: | |
self.parent.assertEqual( | |
result.multimodal_masked_embeddings.shape, | |
( | |
self.multimodal_model_tester.batch_size, | |
self.text_model_tester.seq_length + num_patches + 2, | |
self.multimodal_model_tester.hidden_size, | |
), | |
) | |
self.parent.assertEqual( | |
result.itm_logits.shape, | |
(self.text_model_tester.batch_size, 2), | |
) | |
self.parent.assertEqual( | |
result.mmm_text_logits.shape, | |
( | |
(inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), | |
self.text_model_tester.vocab_size, | |
), | |
) | |
self.parent.assertEqual( | |
result.mmm_image_logits.shape, | |
(inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), | |
) | |
self.parent.assertEqual( | |
result.contrastive_logits_per_image.shape, | |
(self.image_model_tester.batch_size, self.text_model_tester.batch_size), | |
) | |
self.parent.assertEqual( | |
result.contrastive_logits_per_text.shape, | |
(self.text_model_tester.batch_size, self.image_model_tester.batch_size), | |
) | |
for item in [ | |
result.loss_info.global_contrastive, | |
result.loss_info.itm, | |
result.loss_info.mmm_text, | |
result.loss_info.mmm_image, | |
]: | |
self.parent.assertEqual(item.dim(), 0) | |
for item in [result.loss_info.mim, result.loss_info.mlm]: | |
self.parent.assertIsNone(item) | |
else: | |
self.parent.assertIsNone(result.multimodal_masked_embeddings) | |
for item in [ | |
result.loss_info.global_contrastive, | |
result.loss_info.itm, | |
result.loss_info.mmm_text, | |
result.loss_info.mmm_image, | |
]: | |
self.parent.assertIsNone(item) | |
self.parent.assertIsNone(result.multimodal_embeddings) | |
class FlavaForPreTrainingTest(FlavaModelTest): | |
all_model_classes = (FlavaForPreTraining,) if is_torch_available() else () | |
class_for_tester = FlavaForPreTrainingTester | |
test_torchscript = False | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
im = Image.open(requests.get(url, stream=True).raw) | |
return im | |
class FlavaModelIntegrationTest(unittest.TestCase): | |
def test_inference(self): | |
model_name = "facebook/flava-full" | |
model = FlavaModel.from_pretrained(model_name).to(torch_device) | |
processor = FlavaProcessor.from_pretrained(model_name) | |
image = prepare_img() | |
inputs = processor( | |
text=["a photo of a cat", "a photo of a dog"], | |
images=[image, image], | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt", | |
).to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs, return_dict=True) | |
# verify the embeddings | |
self.assertAlmostEqual(outputs.image_embeddings.sum().item(), -1352.53540, places=4) | |
self.assertAlmostEqual(outputs.text_embeddings.sum().item(), -198.98225, places=4) | |
self.assertAlmostEqual(outputs.multimodal_embeddings.sum().item(), -3988.51367, places=4) | |
class FlavaForPreTrainingIntegrationTest(unittest.TestCase): | |
def test_inference(self): | |
model_name = "facebook/flava-full" | |
model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device) | |
processor = FlavaProcessor.from_pretrained(model_name) | |
torch.manual_seed(1) | |
random.seed(1) | |
image = prepare_img() | |
inputs = processor( | |
text=["a photo of a cat", "a photo of a dog"], | |
images=[image, image], | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt", | |
return_codebook_pixels=True, | |
return_image_mask=True, | |
) | |
inputs["input_ids_masked"] = inputs["input_ids"].clone() | |
inputs["input_ids_masked"][0, 4:6] = 103 | |
inputs["mlm_labels"] = inputs["input_ids"].clone() | |
inputs["mlm_labels"][:, :] = -100 | |
inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6] | |
inputs = inputs.to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
self.assertEqual( | |
outputs.contrastive_logits_per_image.shape, | |
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), | |
) | |
self.assertEqual( | |
outputs.contrastive_logits_per_text.shape, | |
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), | |
) | |
expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device) | |
self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3)) | |
self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 1.75533199, places=4) | |
self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 7.0290069, places=4) | |
self.assertAlmostEqual(outputs.loss.item(), 11.0626, places=4) | |