voice_clone / transformers /tests /models /marian /test_modeling_marian.py
ahassoun's picture
Upload 3018 files
ee6e328
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Marian model. """
import tempfile
import unittest
from huggingface_hub.hf_api import list_models
from transformers import MarianConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
MarianModel,
MarianMTModel,
TranslationPipeline,
)
from transformers.models.marian.convert_marian_to_pytorch import (
ORG_NAME,
convert_hf_name_to_opus_name,
convert_opus_name_to_hf_name,
)
from transformers.models.marian.modeling_marian import (
MarianDecoder,
MarianEncoder,
MarianForCausalLM,
shift_tokens_right,
)
def prepare_marian_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class MarianModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
decoder_start_token_id=3,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.decoder_start_token_id = decoder_start_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return MarianConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = MarianModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = MarianModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"conversational": MarianMTModel,
"feature-extraction": MarianModel,
"summarization": MarianMTModel,
"text-generation": MarianForCausalLM,
"text2text-generation": MarianMTModel,
"translation": MarianMTModel,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = MarianModelTester(self)
self.config_tester = ConfigTester(self, config_class=MarianConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = MarianMTModel(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_share_encoder_decoder_embeddings(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
# check if embeddings are shared by default
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
# check if embeddings are not shared when config.share_encoder_decoder_embeddings = False
config.share_encoder_decoder_embeddings = False
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
# check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False
config, _ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False)
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
def test_resize_decoder_token_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs()
# check if resize_decoder_token_embeddings raises an error when embeddings are shared
for model_class in self.all_model_classes:
model = model_class(config)
with self.assertRaises(ValueError):
model.resize_decoder_token_embeddings(config.vocab_size + 1)
# check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False
config.share_encoder_decoder_embeddings = False
for model_class in self.all_model_classes:
model = model_class(config)
model.resize_decoder_token_embeddings(config.vocab_size + 1)
self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model))
# check if lm_head is also resized
config, _ = self.model_tester.prepare_config_and_inputs()
config.share_encoder_decoder_embeddings = False
model = MarianMTModel(config)
model.resize_decoder_token_embeddings(config.vocab_size + 1)
self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model))
def test_tie_word_embeddings_decoder(self):
pass
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
class ModelManagementTests(unittest.TestCase):
@slow
@require_torch
def test_model_names(self):
model_list = list_models()
model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
self.assertListEqual([], bad_model_ids)
self.assertGreater(len(model_ids), 500)
@require_torch
@require_sentencepiece
@require_tokenizers
class MarianIntegrationTest(unittest.TestCase):
src = "en"
tgt = "de"
src_text = [
"I am a small frog.",
"Now I can forget the 100 words of german that I know.",
"Tom asked his teacher for advice.",
"That's how I would do it.",
"Tom really admired Mary's courage.",
"Turn around and close your eyes.",
]
expected_text = [
"Ich bin ein kleiner Frosch.",
"Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
"Tom bat seinen Lehrer um Rat.",
"So würde ich das machen.",
"Tom bewunderte Marias Mut wirklich.",
"Drehen Sie sich um und schließen Sie die Augen.",
]
# ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen
@classmethod
def setUpClass(cls) -> None:
cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
return cls
@cached_property
def tokenizer(self):
return AutoTokenizer.from_pretrained(self.model_name)
@property
def eos_token_id(self) -> int:
return self.tokenizer.eos_token_id
@cached_property
def model(self):
model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
c = model.config
self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
self.assertEqual(c.max_length, 512)
self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
if torch_device == "cuda":
return model.half()
else:
return model
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
generated_words = self.translate_src_text(**tokenizer_kwargs)
self.assertListEqual(self.expected_text, generated_words)
def translate_src_text(self, **tokenizer_kwargs):
model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to(
torch_device
)
self.assertEqual(self.model.device, model_inputs.input_ids.device)
generated_ids = self.model.generate(
model_inputs.input_ids,
attention_mask=model_inputs.attention_mask,
num_beams=2,
max_length=128,
renormalize_logits=True, # Marian should always renormalize its logits. See #25459
)
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return generated_words
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_DE_More(MarianIntegrationTest):
@slow
def test_forward(self):
src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
expected_ids = [38, 121, 14, 697, 38848, 0]
model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device)
self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
desired_keys = {
"input_ids",
"attention_mask",
"labels",
}
self.assertSetEqual(desired_keys, set(model_inputs.keys()))
model_inputs["decoder_input_ids"] = shift_tokens_right(
model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
)
model_inputs["return_dict"] = True
model_inputs["use_cache"] = False
with torch.no_grad():
outputs = self.model(**model_inputs)
max_indices = outputs.logits.argmax(-1)
self.tokenizer.batch_decode(max_indices)
def test_unk_support(self):
t = self.tokenizer
ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
self.assertEqual(expected, ids)
def test_pad_not_split(self):
input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist()
expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad
self.assertListEqual(expected_w_pad, input_ids_w_pad)
@slow
def test_batch_generation_en_de(self):
self._assert_generated_batch_equal_expected()
def test_auto_config(self):
config = AutoConfig.from_pretrained(self.model_name)
self.assertIsInstance(config, MarianConfig)
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_FR(MarianIntegrationTest):
src = "en"
tgt = "fr"
src_text = [
"I am a small frog.",
"Now I can forget the 100 words of german that I know.",
]
expected_text = [
"Je suis une petite grenouille.",
"Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
]
@slow
def test_batch_generation_en_fr(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_FR_EN(MarianIntegrationTest):
src = "fr"
tgt = "en"
src_text = [
"Donnez moi le micro.",
"Tom et Mary étaient assis à une table.", # Accents
]
expected_text = [
"Give me the microphone.",
"Tom and Mary were sitting at a table.",
]
@slow
def test_batch_generation_fr_en(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_RU_FR(MarianIntegrationTest):
src = "ru"
tgt = "fr"
src_text = ["Он показал мне рукопись своей новой пьесы."]
expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
@slow
def test_batch_generation_ru_fr(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_MT_EN(MarianIntegrationTest):
"""Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""
src = "mt"
tgt = "en"
src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
@slow
def test_batch_generation_mt_en(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_zh(MarianIntegrationTest):
src = "en"
tgt = "zh"
src_text = ["My name is Wolfgang and I live in Berlin"]
expected_text = ["我叫沃尔夫冈 我住在柏林"]
@slow
def test_batch_generation_eng_zho(self):
self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_ROMANCE(MarianIntegrationTest):
"""Multilingual on target side."""
src = "en"
tgt = "ROMANCE"
src_text = [
">>fr<< Don't spend so much time watching TV.",
">>pt<< Your message has been sent.",
">>es<< He's two years older than me.",
]
expected_text = [
"Ne passez pas autant de temps à regarder la télé.",
"A sua mensagem foi enviada.",
"Es dos años más viejo que yo.",
]
@slow
def test_batch_generation_en_ROMANCE_multi(self):
self._assert_generated_batch_equal_expected()
@slow
def test_pipeline(self):
device = 0 if torch_device == "cuda" else -1
pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
output = pipeline(self.src_text)
self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
@require_sentencepiece
@require_tokenizers
class TestMarian_FI_EN_V2(MarianIntegrationTest):
src = "fi"
tgt = "en"
src_text = [
"minä tykkään kirjojen lukemisesta",
"Pidän jalkapallon katsomisesta",
]
expected_text = ["I like to read books", "I like watching football"]
@classmethod
def setUpClass(cls) -> None:
cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2"
return cls
@slow
def test_batch_generation_fi_en(self):
self._assert_generated_batch_equal_expected()
@require_torch
class TestConversionUtils(unittest.TestCase):
def test_renaming_multilingual(self):
old_names = [
"opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"opus-mt-cmn+cn-fi", # no group
"opus-mt-en-de", # standard name
"opus-mt-en-de", # standard name
]
expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])
def test_undoing_renaming(self):
hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
expected_opus_names = [
"cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
"cmn+cn-fi",
"en-de", # standard name
"en-de",
]
self.assertListEqual(expected_opus_names, converted_opus_names)
class MarianStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=2,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = MarianConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = MarianDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = MarianDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(
self,
):
self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=MarianConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def test_left_padding_compatibility(self):
pass