Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2021, The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Marian model. """ | |
import tempfile | |
import unittest | |
from huggingface_hub.hf_api import list_models | |
from transformers import MarianConfig, is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from transformers.utils import cached_property | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
AutoConfig, | |
AutoModelWithLMHead, | |
AutoTokenizer, | |
MarianModel, | |
MarianMTModel, | |
TranslationPipeline, | |
) | |
from transformers.models.marian.convert_marian_to_pytorch import ( | |
ORG_NAME, | |
convert_hf_name_to_opus_name, | |
convert_opus_name_to_hf_name, | |
) | |
from transformers.models.marian.modeling_marian import ( | |
MarianDecoder, | |
MarianEncoder, | |
MarianForCausalLM, | |
shift_tokens_right, | |
) | |
def prepare_marian_inputs_dict( | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = input_ids.ne(config.pad_token_id) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) | |
if head_mask is None: | |
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) | |
if decoder_head_mask is None: | |
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
return { | |
"input_ids": input_ids, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
} | |
class MarianModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_labels=False, | |
vocab_size=99, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=20, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
decoder_start_token_id=3, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
# forcing a certain token to be generated, sets all other tokens to -inf | |
# if however the token to be generated is already at -inf then it can lead token | |
# `nan` values and thus break generation | |
self.forced_bos_token_id = None | |
self.forced_eos_token_id = None | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( | |
3, | |
) | |
input_ids[:, -1] = self.eos_token_id # Eos Token | |
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
config = self.get_config() | |
inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) | |
return config, inputs_dict | |
def get_config(self): | |
return MarianConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
forced_bos_token_id=self.forced_bos_token_id, | |
forced_eos_token_id=self.forced_eos_token_id, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = MarianModel(config=config).get_decoder().to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
head_mask = inputs_dict["head_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def check_encoder_decoder_model_standalone(self, config, inputs_dict): | |
model = MarianModel(config=config).to(torch_device).eval() | |
outputs = model(**inputs_dict) | |
encoder_last_hidden_state = outputs.encoder_last_hidden_state | |
last_hidden_state = outputs.last_hidden_state | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
encoder = model.get_encoder() | |
encoder.save_pretrained(tmpdirname) | |
encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device) | |
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ | |
0 | |
] | |
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
decoder = model.get_decoder() | |
decoder.save_pretrained(tmpdirname) | |
decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device) | |
last_hidden_state_2 = decoder( | |
input_ids=inputs_dict["decoder_input_ids"], | |
attention_mask=inputs_dict["decoder_attention_mask"], | |
encoder_hidden_states=encoder_last_hidden_state, | |
encoder_attention_mask=inputs_dict["attention_mask"], | |
)[0] | |
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) | |
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else () | |
all_generative_model_classes = (MarianMTModel,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"conversational": MarianMTModel, | |
"feature-extraction": MarianModel, | |
"summarization": MarianMTModel, | |
"text-generation": MarianForCausalLM, | |
"text2text-generation": MarianMTModel, | |
"translation": MarianMTModel, | |
} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
fx_compatible = True | |
test_pruning = False | |
test_missing_keys = False | |
def setUp(self): | |
self.model_tester = MarianModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=MarianConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_encoder_decoder_model_standalone(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = MarianMTModel(config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
def test_share_encoder_decoder_embeddings(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
# check if embeddings are shared by default | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) | |
self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) | |
# check if embeddings are not shared when config.share_encoder_decoder_embeddings = False | |
config.share_encoder_decoder_embeddings = False | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) | |
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) | |
# check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False | |
config, _ = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False) | |
self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) | |
self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) | |
def test_resize_decoder_token_embeddings(self): | |
config, _ = self.model_tester.prepare_config_and_inputs() | |
# check if resize_decoder_token_embeddings raises an error when embeddings are shared | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with self.assertRaises(ValueError): | |
model.resize_decoder_token_embeddings(config.vocab_size + 1) | |
# check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False | |
config.share_encoder_decoder_embeddings = False | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.resize_decoder_token_embeddings(config.vocab_size + 1) | |
self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model)) | |
# check if lm_head is also resized | |
config, _ = self.model_tester.prepare_config_and_inputs() | |
config.share_encoder_decoder_embeddings = False | |
model = MarianMTModel(config) | |
model.resize_decoder_token_embeddings(config.vocab_size + 1) | |
self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model)) | |
def test_tie_word_embeddings_decoder(self): | |
pass | |
def assert_tensors_close(a, b, atol=1e-12, prefix=""): | |
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" | |
if a is None and b is None: | |
return True | |
try: | |
if torch.allclose(a, b, atol=atol): | |
return True | |
raise | |
except Exception: | |
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() | |
if a.numel() > 100: | |
msg = f"tensor values are {pct_different:.1%} percent different." | |
else: | |
msg = f"{a} != {b}" | |
if prefix: | |
msg = prefix + ": " + msg | |
raise AssertionError(msg) | |
def _long_tensor(tok_lst): | |
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) | |
class ModelManagementTests(unittest.TestCase): | |
def test_model_names(self): | |
model_list = list_models() | |
model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)] | |
bad_model_ids = [mid for mid in model_ids if "+" in model_ids] | |
self.assertListEqual([], bad_model_ids) | |
self.assertGreater(len(model_ids), 500) | |
class MarianIntegrationTest(unittest.TestCase): | |
src = "en" | |
tgt = "de" | |
src_text = [ | |
"I am a small frog.", | |
"Now I can forget the 100 words of german that I know.", | |
"Tom asked his teacher for advice.", | |
"That's how I would do it.", | |
"Tom really admired Mary's courage.", | |
"Turn around and close your eyes.", | |
] | |
expected_text = [ | |
"Ich bin ein kleiner Frosch.", | |
"Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.", | |
"Tom bat seinen Lehrer um Rat.", | |
"So würde ich das machen.", | |
"Tom bewunderte Marias Mut wirklich.", | |
"Drehen Sie sich um und schließen Sie die Augen.", | |
] | |
# ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen | |
def setUpClass(cls) -> None: | |
cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" | |
return cls | |
def tokenizer(self): | |
return AutoTokenizer.from_pretrained(self.model_name) | |
def eos_token_id(self) -> int: | |
return self.tokenizer.eos_token_id | |
def model(self): | |
model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device) | |
c = model.config | |
self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) | |
self.assertEqual(c.max_length, 512) | |
self.assertEqual(c.decoder_start_token_id, c.pad_token_id) | |
if torch_device == "cuda": | |
return model.half() | |
else: | |
return model | |
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): | |
generated_words = self.translate_src_text(**tokenizer_kwargs) | |
self.assertListEqual(self.expected_text, generated_words) | |
def translate_src_text(self, **tokenizer_kwargs): | |
model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to( | |
torch_device | |
) | |
self.assertEqual(self.model.device, model_inputs.input_ids.device) | |
generated_ids = self.model.generate( | |
model_inputs.input_ids, | |
attention_mask=model_inputs.attention_mask, | |
num_beams=2, | |
max_length=128, | |
renormalize_logits=True, # Marian should always renormalize its logits. See #25459 | |
) | |
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
return generated_words | |
class TestMarian_EN_DE_More(MarianIntegrationTest): | |
def test_forward(self): | |
src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."] | |
expected_ids = [38, 121, 14, 697, 38848, 0] | |
model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device) | |
self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist()) | |
desired_keys = { | |
"input_ids", | |
"attention_mask", | |
"labels", | |
} | |
self.assertSetEqual(desired_keys, set(model_inputs.keys())) | |
model_inputs["decoder_input_ids"] = shift_tokens_right( | |
model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id | |
) | |
model_inputs["return_dict"] = True | |
model_inputs["use_cache"] = False | |
with torch.no_grad(): | |
outputs = self.model(**model_inputs) | |
max_indices = outputs.logits.argmax(-1) | |
self.tokenizer.batch_decode(max_indices) | |
def test_unk_support(self): | |
t = self.tokenizer | |
ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist() | |
expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id] | |
self.assertEqual(expected, ids) | |
def test_pad_not_split(self): | |
input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist() | |
expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad | |
self.assertListEqual(expected_w_pad, input_ids_w_pad) | |
def test_batch_generation_en_de(self): | |
self._assert_generated_batch_equal_expected() | |
def test_auto_config(self): | |
config = AutoConfig.from_pretrained(self.model_name) | |
self.assertIsInstance(config, MarianConfig) | |
class TestMarian_EN_FR(MarianIntegrationTest): | |
src = "en" | |
tgt = "fr" | |
src_text = [ | |
"I am a small frog.", | |
"Now I can forget the 100 words of german that I know.", | |
] | |
expected_text = [ | |
"Je suis une petite grenouille.", | |
"Maintenant, je peux oublier les 100 mots d'allemand que je connais.", | |
] | |
def test_batch_generation_en_fr(self): | |
self._assert_generated_batch_equal_expected() | |
class TestMarian_FR_EN(MarianIntegrationTest): | |
src = "fr" | |
tgt = "en" | |
src_text = [ | |
"Donnez moi le micro.", | |
"Tom et Mary étaient assis à une table.", # Accents | |
] | |
expected_text = [ | |
"Give me the microphone.", | |
"Tom and Mary were sitting at a table.", | |
] | |
def test_batch_generation_fr_en(self): | |
self._assert_generated_batch_equal_expected() | |
class TestMarian_RU_FR(MarianIntegrationTest): | |
src = "ru" | |
tgt = "fr" | |
src_text = ["Он показал мне рукопись своей новой пьесы."] | |
expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."] | |
def test_batch_generation_ru_fr(self): | |
self._assert_generated_batch_equal_expected() | |
class TestMarian_MT_EN(MarianIntegrationTest): | |
"""Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten""" | |
src = "mt" | |
tgt = "en" | |
src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] | |
expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] | |
def test_batch_generation_mt_en(self): | |
self._assert_generated_batch_equal_expected() | |
class TestMarian_en_zh(MarianIntegrationTest): | |
src = "en" | |
tgt = "zh" | |
src_text = ["My name is Wolfgang and I live in Berlin"] | |
expected_text = ["我叫沃尔夫冈 我住在柏林"] | |
def test_batch_generation_eng_zho(self): | |
self._assert_generated_batch_equal_expected() | |
class TestMarian_en_ROMANCE(MarianIntegrationTest): | |
"""Multilingual on target side.""" | |
src = "en" | |
tgt = "ROMANCE" | |
src_text = [ | |
">>fr<< Don't spend so much time watching TV.", | |
">>pt<< Your message has been sent.", | |
">>es<< He's two years older than me.", | |
] | |
expected_text = [ | |
"Ne passez pas autant de temps à regarder la télé.", | |
"A sua mensagem foi enviada.", | |
"Es dos años más viejo que yo.", | |
] | |
def test_batch_generation_en_ROMANCE_multi(self): | |
self._assert_generated_batch_equal_expected() | |
def test_pipeline(self): | |
device = 0 if torch_device == "cuda" else -1 | |
pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device) | |
output = pipeline(self.src_text) | |
self.assertEqual(self.expected_text, [x["translation_text"] for x in output]) | |
class TestMarian_FI_EN_V2(MarianIntegrationTest): | |
src = "fi" | |
tgt = "en" | |
src_text = [ | |
"minä tykkään kirjojen lukemisesta", | |
"Pidän jalkapallon katsomisesta", | |
] | |
expected_text = ["I like to read books", "I like watching football"] | |
def setUpClass(cls) -> None: | |
cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2" | |
return cls | |
def test_batch_generation_fi_en(self): | |
self._assert_generated_batch_equal_expected() | |
class TestConversionUtils(unittest.TestCase): | |
def test_renaming_multilingual(self): | |
old_names = [ | |
"opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", | |
"opus-mt-cmn+cn-fi", # no group | |
"opus-mt-en-de", # standard name | |
"opus-mt-en-de", # standard name | |
] | |
expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] | |
self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names]) | |
def test_undoing_renaming(self): | |
hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] | |
converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names] | |
expected_opus_names = [ | |
"cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", | |
"cmn+cn-fi", | |
"en-de", # standard name | |
"en-de", | |
] | |
self.assertListEqual(expected_opus_names, converted_opus_names) | |
class MarianStandaloneDecoderModelTester: | |
def __init__( | |
self, | |
parent, | |
vocab_size=99, | |
batch_size=13, | |
d_model=16, | |
decoder_seq_length=7, | |
is_training=True, | |
is_decoder=True, | |
use_attention_mask=True, | |
use_cache=False, | |
use_labels=True, | |
decoder_start_token_id=2, | |
decoder_ffn_dim=32, | |
decoder_layers=2, | |
encoder_attention_heads=4, | |
decoder_attention_heads=4, | |
max_position_embeddings=30, | |
is_encoder_decoder=False, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.decoder_seq_length = decoder_seq_length | |
# For common tests | |
self.seq_length = self.decoder_seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.d_model = d_model | |
self.hidden_size = d_model | |
self.num_hidden_layers = decoder_layers | |
self.decoder_layers = decoder_layers | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_attention_heads = decoder_attention_heads | |
self.num_attention_heads = decoder_attention_heads | |
self.eos_token_id = eos_token_id | |
self.bos_token_id = bos_token_id | |
self.pad_token_id = pad_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
self.use_cache = use_cache | |
self.max_position_embeddings = max_position_embeddings | |
self.is_encoder_decoder = is_encoder_decoder | |
self.scope = None | |
self.decoder_key_length = decoder_seq_length | |
self.base_model_out_len = 2 | |
self.decoder_attention_idx = 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
attention_mask = None | |
if self.use_attention_mask: | |
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) | |
lm_labels = None | |
if self.use_labels: | |
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
config = MarianConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.d_model, | |
decoder_layers=self.decoder_layers, | |
decoder_ffn_dim=self.decoder_ffn_dim, | |
encoder_attention_heads=self.encoder_attention_heads, | |
decoder_attention_heads=self.decoder_attention_heads, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
use_cache=self.use_cache, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
max_position_embeddings=self.max_position_embeddings, | |
is_encoder_decoder=self.is_encoder_decoder, | |
) | |
return ( | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
) | |
def create_and_check_decoder_model_past( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
): | |
config.use_cache = True | |
model = MarianDecoder(config=config).to(torch_device).eval() | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past_key_values = outputs["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) | |
def create_and_check_decoder_model_attention_mask_past( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
): | |
model = MarianDecoder(config=config).to(torch_device).eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = input_ids.shape[-1] // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
} | |
return config, inputs_dict | |
class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else () | |
test_pruning = False | |
is_encoder_decoder = False | |
def setUp( | |
self, | |
): | |
self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False) | |
self.config_tester = ConfigTester(self, config_class=MarianConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_decoder_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) | |
def test_decoder_model_attn_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
return | |
# and it's not used enough to be worth fixing :) | |
def test_left_padding_compatibility(self): | |
pass | |