voice_clone / transformers /tests /tokenization /test_tokenization_utils.py
ahassoun's picture
Upload 3018 files
ee6e328
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
isort:skip_file
"""
import os
import pickle
import tempfile
import unittest
from typing import Callable, Optional
import numpy as np
from transformers import (
BatchEncoding,
BertTokenizer,
BertTokenizerFast,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
TensorType,
TokenSpan,
is_tokenizers_available,
)
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow
if is_tokenizers_available():
from tokenizers import Tokenizer
from tokenizers.models import WordPiece
class TokenizerUtilsTest(unittest.TestCase):
def check_tokenizer_from_pretrained(self, tokenizer_class):
s3_models = list(tokenizer_class.max_model_input_sizes.keys())
for model_name in s3_models[:1]:
tokenizer = tokenizer_class.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, tokenizer_class)
self.assertIsInstance(tokenizer, PreTrainedTokenizer)
for special_tok in tokenizer.all_special_tokens:
self.assertIsInstance(special_tok, str)
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
self.assertIsInstance(special_tok_id, int)
def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
batch_encoding_str = pickle.dumps(be_original)
self.assertIsNotNone(batch_encoding_str)
be_restored = pickle.loads(batch_encoding_str)
# Ensure is_fast is correctly restored
self.assertEqual(be_restored.is_fast, be_original.is_fast)
# Ensure encodings are potentially correctly restored
if be_original.is_fast:
self.assertIsNotNone(be_restored.encodings)
else:
self.assertIsNone(be_restored.encodings)
# Ensure the keys are the same
for original_v, restored_v in zip(be_original.values(), be_restored.values()):
if equal_op:
self.assertTrue(equal_op(restored_v, original_v))
else:
self.assertEqual(restored_v, original_v)
@slow
def test_pretrained_tokenizers(self):
self.check_tokenizer_from_pretrained(GPT2Tokenizer)
def test_tensor_type_from_str(self):
self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
self.assertEqual(TensorType("np"), TensorType.NUMPY)
@require_tokenizers
def test_batch_encoding_pickle(self):
import numpy as np
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
# Python no tensor
with self.subTest("BatchEncoding (Python, return_tensors=None)"):
self.assert_dump_and_restore(tokenizer_p("Small example to encode"))
with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
)
with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
self.assert_dump_and_restore(tokenizer_r("Small example to encode"))
with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
)
@require_tf
@require_tokenizers
def test_batch_encoding_pickle_tf(self):
import tensorflow as tf
def tf_array_equals(t1, t2):
return tf.reduce_all(tf.equal(t1, t2))
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
)
with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
)
@require_torch
@require_tokenizers
def test_batch_encoding_pickle_pt(self):
import torch
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
self.assert_dump_and_restore(
tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
)
with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
self.assert_dump_and_restore(
tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
)
@require_tokenizers
def test_batch_encoding_is_fast(self):
tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
with self.subTest("Python Tokenizer"):
self.assertFalse(tokenizer_p("Small example to_encode").is_fast)
with self.subTest("Rust Tokenizer"):
self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
@require_tokenizers
def test_batch_encoding_word_to_tokens(self):
tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)
self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
self.assertEqual(encoded.word_to_tokens(1), None)
self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))
def test_batch_encoding_with_labels(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="np")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="np")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_torch
def test_batch_encoding_with_labels_pt(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_tf
def test_batch_encoding_with_labels_tf(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
@require_flax
def test_batch_encoding_with_labels_jax(self):
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
self.assertEqual(tensor_batch["labels"].shape, (2,))
# test converting the converted
with CaptureStderr() as cs:
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
self.assertEqual(tensor_batch["labels"].shape, (1,))
def test_padding_accepts_tensors(self):
features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="np")
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_torch
def test_padding_accepts_tensors_pt(self):
import torch
features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="pt")
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_tf
def test_padding_accepts_tensors_tf(self):
import tensorflow as tf
features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
batch = tokenizer.pad(features, padding=True)
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
batch = tokenizer.pad(features, padding=True, return_tensors="tf")
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
@require_tokenizers
def test_instantiation_from_tokenizers(self):
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)
@require_tokenizers
def test_instantiation_from_tokenizers_json_file(self):
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
with tempfile.TemporaryDirectory() as tmpdirname:
bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))