Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`. | |
Usage for an update (as used by the GitHub action `update_metadata`): | |
```bash | |
python utils/update_metadata.py --token <token> --commit_sha <commit_sha> | |
``` | |
Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so | |
that new pipelines are properly added as metadata (as used in `make repo-consistency`): | |
```bash | |
python utils/update_metadata.py --check-only | |
``` | |
""" | |
import argparse | |
import collections | |
import os | |
import re | |
import tempfile | |
from typing import Dict, List, Tuple | |
import pandas as pd | |
from datasets import Dataset | |
from huggingface_hub import hf_hub_download, upload_folder | |
from transformers.utils import direct_transformers_import | |
# All paths are set with the intent you should run this script from the root of the repo with the command | |
# python utils/update_metadata.py | |
TRANSFORMERS_PATH = "src/transformers" | |
# This is to make sure the transformers module imported is the one in the repo. | |
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) | |
# Regexes that match TF/Flax/PT model names. | |
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. | |
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | |
# Fill this with tuples (pipeline_tag, model_mapping, auto_model) | |
PIPELINE_TAGS_AND_AUTO_MODELS = [ | |
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), | |
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), | |
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), | |
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), | |
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), | |
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), | |
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), | |
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), | |
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), | |
( | |
"zero-shot-object-detection", | |
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", | |
"AutoModelForZeroShotObjectDetection", | |
), | |
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), | |
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), | |
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), | |
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), | |
( | |
"table-question-answering", | |
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", | |
"AutoModelForTableQuestionAnswering", | |
), | |
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), | |
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), | |
( | |
"next-sentence-prediction", | |
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", | |
"AutoModelForNextSentencePrediction", | |
), | |
( | |
"audio-frame-classification", | |
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", | |
"AutoModelForAudioFrameClassification", | |
), | |
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), | |
( | |
"document-question-answering", | |
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", | |
"AutoModelForDocumentQuestionAnswering", | |
), | |
( | |
"visual-question-answering", | |
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", | |
"AutoModelForVisualQuestionAnswering", | |
), | |
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), | |
( | |
"zero-shot-image-classification", | |
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", | |
"AutoModelForZeroShotImageClassification", | |
), | |
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), | |
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), | |
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), | |
("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"), | |
("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"), | |
] | |
def camel_case_split(identifier: str) -> List[str]: | |
""" | |
Split a camel-cased name into words. | |
Args: | |
identifier (`str`): The camel-cased name to parse. | |
Returns: | |
`List[str]`: The list of words in the identifier (as seprated by capital letters). | |
Example: | |
```py | |
>>> camel_case_split("CamelCasedClass") | |
["Camel", "Cased", "Class"] | |
``` | |
""" | |
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python | |
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) | |
return [m.group(0) for m in matches] | |
def get_frameworks_table() -> pd.DataFrame: | |
""" | |
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto | |
modules. | |
""" | |
# Dictionary model names to config. | |
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES | |
model_prefix_to_model_type = { | |
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items() | |
} | |
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. | |
pt_models = collections.defaultdict(bool) | |
tf_models = collections.defaultdict(bool) | |
flax_models = collections.defaultdict(bool) | |
# Let's lookup through all transformers object (once) and find if models are supported by a given backend. | |
for attr_name in dir(transformers_module): | |
lookup_dict = None | |
if _re_tf_models.match(attr_name) is not None: | |
lookup_dict = tf_models | |
attr_name = _re_tf_models.match(attr_name).groups()[0] | |
elif _re_flax_models.match(attr_name) is not None: | |
lookup_dict = flax_models | |
attr_name = _re_flax_models.match(attr_name).groups()[0] | |
elif _re_pt_models.match(attr_name) is not None: | |
lookup_dict = pt_models | |
attr_name = _re_pt_models.match(attr_name).groups()[0] | |
if lookup_dict is not None: | |
while len(attr_name) > 0: | |
if attr_name in model_prefix_to_model_type: | |
lookup_dict[model_prefix_to_model_type[attr_name]] = True | |
break | |
# Try again after removing the last word in the name | |
attr_name = "".join(camel_case_split(attr_name)[:-1]) | |
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys())) | |
all_models = list(all_models) | |
all_models.sort() | |
data = {"model_type": all_models} | |
data["pytorch"] = [pt_models[t] for t in all_models] | |
data["tensorflow"] = [tf_models[t] for t in all_models] | |
data["flax"] = [flax_models[t] for t in all_models] | |
# Now let's find the right processing class for each model. In order we check if there is a Processor, then a | |
# Tokenizer, then a FeatureExtractor, then an ImageProcessor | |
processors = {} | |
for t in all_models: | |
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: | |
processors[t] = "AutoProcessor" | |
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: | |
processors[t] = "AutoTokenizer" | |
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: | |
processors[t] = "AutoFeatureExtractor" | |
elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES: | |
processors[t] = "AutoFeatureExtractor" | |
else: | |
# Default to AutoTokenizer if a model has nothing, for backward compatibility. | |
processors[t] = "AutoTokenizer" | |
data["processor"] = [processors[t] for t in all_models] | |
return pd.DataFrame(data) | |
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]: | |
""" | |
Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore. | |
Args: | |
table (`Dict[str, Tuple[str, str]]`): | |
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with | |
which they should be used. | |
Returns: | |
`Dict[str, Tuple[str, str]]`: The updated table in the same format. | |
""" | |
auto_modules = [ | |
transformers_module.models.auto.modeling_auto, | |
transformers_module.models.auto.modeling_tf_auto, | |
transformers_module.models.auto.modeling_flax_auto, | |
] | |
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: | |
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] | |
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] | |
# Loop through all three frameworks | |
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings): | |
# The type of pipeline may not exist in this framework | |
if not hasattr(module, mapping): | |
continue | |
# First extract all model_names | |
model_names = [] | |
for name in getattr(module, mapping).values(): | |
if isinstance(name, str): | |
model_names.append(name) | |
else: | |
model_names.extend(list(name)) | |
# Add pipeline tag and auto model class for those models | |
table.update({model_name: (pipeline_tag, cls) for model_name in model_names}) | |
return table | |
def update_metadata(token: str, commit_sha: str): | |
""" | |
Update the metadata for the Transformers repo in `huggingface/transformers-metadata`. | |
Args: | |
token (`str`): A valid token giving write access to `huggingface/transformers-metadata`. | |
commit_sha (`str`): The commit SHA on Transformers corresponding to this update. | |
""" | |
frameworks_table = get_frameworks_table() | |
frameworks_dataset = Dataset.from_pandas(frameworks_table) | |
resolved_tags_file = hf_hub_download( | |
"huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token | |
) | |
tags_dataset = Dataset.from_json(resolved_tags_file) | |
table = { | |
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) | |
for i in range(len(tags_dataset)) | |
} | |
table = update_pipeline_and_auto_class_table(table) | |
# Sort the model classes to avoid some nondeterministic updates to create false update commits. | |
model_classes = sorted(table.keys()) | |
tags_table = pd.DataFrame( | |
{ | |
"model_class": model_classes, | |
"pipeline_tag": [table[m][0] for m in model_classes], | |
"auto_class": [table[m][1] for m in model_classes], | |
} | |
) | |
tags_dataset = Dataset.from_pandas(tags_table) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json")) | |
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json")) | |
if commit_sha is not None: | |
commit_message = ( | |
f"Update with commit {commit_sha}\n\nSee: " | |
f"https://github.com/huggingface/transformers/commit/{commit_sha}" | |
) | |
else: | |
commit_message = "Update" | |
upload_folder( | |
repo_id="huggingface/transformers-metadata", | |
folder_path=tmp_dir, | |
repo_type="dataset", | |
token=token, | |
commit_message=commit_message, | |
) | |
def check_pipeline_tags(): | |
""" | |
Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script. | |
""" | |
in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} | |
pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS | |
missing = [] | |
for key in pipeline_tasks: | |
if key not in in_table: | |
model = pipeline_tasks[key]["pt"] | |
if isinstance(model, (list, tuple)): | |
model = model[0] | |
model = model.__name__ | |
if model not in in_table.values(): | |
missing.append(key) | |
if len(missing) > 0: | |
msg = ", ".join(missing) | |
raise ValueError( | |
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " | |
f"`utils/update_metadata.py`: {msg}. Please add them!" | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") | |
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") | |
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") | |
args = parser.parse_args() | |
if args.check_only: | |
check_pipeline_tags() | |
else: | |
update_metadata(args.token, args.commit_sha) | |