Ahmad Basyouni commited on
Commit
b5164a5
·
1 Parent(s): 89c448c

Add application file

Browse files
Files changed (1) hide show
  1. app.py +20 -20
app.py CHANGED
@@ -1,27 +1,27 @@
1
  import gradio as gr
2
- from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler, DDIMScheduler, PNDMScheduler
3
  import torch
4
  from PIL import ImageEnhance, Image
5
  import numpy as np
 
6
 
 
7
  model_id = "CompVis/stable-diffusion-v1-4"
8
- default_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
9
 
10
- # Set device based on availability
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  torch_dtype = torch.float16 if device == "cuda" else torch.float32
13
-
14
- # Load pipeline with appropriate torch dtype
15
  pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=default_scheduler, torch_dtype=torch_dtype).to(device)
16
 
17
- # Scheduler options
18
  schedulers = {
19
- "Artistic & Imaginative (Euler Ancestral) - Recommended for creative scenes, moderate speed": EulerAncestralDiscreteScheduler,
20
- "Photo-Realistic (PNDM) - Best for realistic details, moderate speed": PNDMScheduler,
21
  "High-Definition & Fast (DDIM) - Good quality with fastest speed": DDIMScheduler,
 
 
22
  }
23
 
24
- # Main image generation function with dynamic scheduling and size option
 
25
  def generate_image(prompt, use_categories, genre, style, theme, lighting, scheduler_choice, quality, size):
26
  # Check if additional categories should be added to the prompt
27
  if use_categories:
@@ -38,7 +38,7 @@ def generate_image(prompt, use_categories, genre, style, theme, lighting, schedu
38
  pipe.scheduler = scheduler
39
 
40
  # Set output size based on selection
41
- image_size = (512, 512) if size == "Profile Picture" else (1024, 768)
42
 
43
  # Generate image with specified quality and size
44
  with torch.no_grad():
@@ -54,16 +54,15 @@ def adjust_brightness_contrast(image, brightness, contrast):
54
  image = ImageEnhance.Contrast(image).enhance(contrast)
55
  return np.array(image)
56
 
57
- # Warning function to show a message if the user selects a high value for quality
58
  def show_warning(quality):
59
- if quality > 80:
60
- return "⚠️ High Quality: This setting may slow down generation and might not provide additional visual improvement. Consider using 50-80 steps for best results."
61
  return ""
62
 
63
- # Build Gradio Interface
64
  with gr.Blocks() as demo:
65
  gr.Markdown("# ✨ AI-Powered Wallpaper/Profile Picture Generator\n🖼️ A tool to generate and fine-tune AI-created wallpapers and profile pictures with adjustable styles and effects.")
66
- gr.Markdown("⚠️ **Live effects and advanced prompt engineering coming soon! Disclaimer**: Results may not always be accurate or perfectly aligned with your prompt. Experiment with prompt adjustments and settings to get the best results.")
67
 
68
  # Image Generation Section
69
  with gr.Tab("Image Generator"):
@@ -83,18 +82,19 @@ with gr.Blocks() as demo:
83
  theme = gr.Dropdown(["Landscape", "Portrait", "Abstract Patterns", "Architecture"], label="Theme")
84
  lighting = gr.Dropdown(["Warm", "Cool", "Cinematic", "Soft", "Neon"], label="Lighting")
85
 
86
- quality = gr.Slider(20, 150, value=80, step=10, label="Image Quality", info="Higher values yield more detail but take longer to generate.")
 
87
  warning_message = gr.Markdown("")
88
 
89
- # Scheduler selection with default option
90
  scheduler_choice = gr.Dropdown(
91
  [
92
- "Artistic & Imaginative (Euler Ancestral) - Recommended for creative scenes, moderate speed",
93
  "Photo-Realistic (PNDM) - Best for realistic details, moderate speed",
94
- "High-Definition & Fast (DDIM) - Good quality with fastest speed"
95
  ],
96
  label="Artistic Style & Speed",
97
- value="Artistic & Imaginative (Euler Ancestral) - Recommended for creative scenes, moderate speed"
98
  )
99
 
100
  size = gr.Dropdown(["Profile Picture", "Wallpaper"], label="Image Size", value="Profile Picture")
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionPipeline, DDIMScheduler
3
  import torch
4
  from PIL import ImageEnhance, Image
5
  import numpy as np
6
+ import spaces # For using ZeroGPU decorator
7
 
8
+ # Load Stable Diffusion pipeline with efficient defaults
9
  model_id = "CompVis/stable-diffusion-v1-4"
10
+ default_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
11
 
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  torch_dtype = torch.float16 if device == "cuda" else torch.float32
 
 
14
  pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=default_scheduler, torch_dtype=torch_dtype).to(device)
15
 
16
+ # Scheduler options (setting DDIM as the default for speed)
17
  schedulers = {
 
 
18
  "High-Definition & Fast (DDIM) - Good quality with fastest speed": DDIMScheduler,
19
+ "Photo-Realistic (PNDM) - Best for realistic details, moderate speed": PNDMScheduler,
20
+ "Artistic & Imaginative (Euler Ancestral) - Good for creative scenes, moderate speed": EulerAncestralDiscreteScheduler,
21
  }
22
 
23
+ # Main image generation function with 60-second GPU duration limit
24
+ @spaces.GPU(duration=60)
25
  def generate_image(prompt, use_categories, genre, style, theme, lighting, scheduler_choice, quality, size):
26
  # Check if additional categories should be added to the prompt
27
  if use_categories:
 
38
  pipe.scheduler = scheduler
39
 
40
  # Set output size based on selection
41
+ image_size = (512, 512) if size == "Profile Picture" else (512, 512) # Using smaller size for faster generation
42
 
43
  # Generate image with specified quality and size
44
  with torch.no_grad():
 
54
  image = ImageEnhance.Contrast(image).enhance(contrast)
55
  return np.array(image)
56
 
57
+ # Warning function for high-quality settings
58
  def show_warning(quality):
59
+ if quality > 40: # Lower threshold for warning
60
+ return "⚠️ High Quality: This may slow down generation. Consider using values below 40 for faster results."
61
  return ""
62
 
63
+ # Build Gradio Interface with adjusted defaults
64
  with gr.Blocks() as demo:
65
  gr.Markdown("# ✨ AI-Powered Wallpaper/Profile Picture Generator\n🖼️ A tool to generate and fine-tune AI-created wallpapers and profile pictures with adjustable styles and effects.")
 
66
 
67
  # Image Generation Section
68
  with gr.Tab("Image Generator"):
 
82
  theme = gr.Dropdown(["Landscape", "Portrait", "Abstract Patterns", "Architecture"], label="Theme")
83
  lighting = gr.Dropdown(["Warm", "Cool", "Cinematic", "Soft", "Neon"], label="Lighting")
84
 
85
+ # Reduced quality for faster generation
86
+ quality = gr.Slider(20, 80, value=30, step=10, label="Image Quality", info="Lower values for faster generation.")
87
  warning_message = gr.Markdown("")
88
 
89
+ # Scheduler selection with default option as DDIM for speed
90
  scheduler_choice = gr.Dropdown(
91
  [
92
+ "High-Definition & Fast (DDIM) - Good quality with fastest speed",
93
  "Photo-Realistic (PNDM) - Best for realistic details, moderate speed",
94
+ "Artistic & Imaginative (Euler Ancestral) - Good for creative scenes, moderate speed"
95
  ],
96
  label="Artistic Style & Speed",
97
+ value="High-Definition & Fast (DDIM) - Good quality with fastest speed"
98
  )
99
 
100
  size = gr.Dropdown(["Profile Picture", "Wallpaper"], label="Image Size", value="Profile Picture")