Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
-
import
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2")
|
6 |
model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2")
|
7 |
-
|
8 |
def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=0.7):
|
9 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
10 |
output = model.generate(
|
11 |
input_ids,
|
12 |
max_length=max_length,
|
13 |
num_return_sequences=num_return_sequences,
|
14 |
-
temperature=
|
15 |
|
16 |
)
|
17 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
main()
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2")
|
6 |
model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2")
|
7 |
+
temp
|
8 |
def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=0.7):
|
9 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
10 |
output = model.generate(
|
11 |
input_ids,
|
12 |
max_length=max_length,
|
13 |
num_return_sequences=num_return_sequences,
|
14 |
+
temperature=temperature
|
15 |
|
16 |
)
|
17 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
|
19 |
+
hface = gr.Interface(
|
20 |
+
fn=generate_text,
|
21 |
+
inputs="text",
|
22 |
+
outputs="text",
|
23 |
+
title="Text Generator",
|
24 |
+
description="Enter your prompt and generate text"
|
25 |
+
)
|
26 |
|
27 |
+
hface.launch()
|
|