Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2")
|
7 |
+
|
8 |
+
def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=0.7):
|
9 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
10 |
+
output = model.generate(
|
11 |
+
input_ids,
|
12 |
+
max_length=max_length,
|
13 |
+
num_return_sequences=num_return_sequences,
|
14 |
+
temperature=temperature
|
15 |
+
|
16 |
+
)
|
17 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
def main():
|
20 |
+
st.title("Text Generator")
|
21 |
+
prompt = st.text_input("Enter your prompt:")
|
22 |
+
if st.button("Generate"):
|
23 |
+
generated_text = generate_text(prompt)
|
24 |
+
st.text_area("Generated Text:", generated_text)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|