import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("ahmadmac/Pretrained-GPT2") model = AutoModelForCausalLM.from_pretrained("ahmadmac/Pretrained-GPT2") def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=0.7): input_ids = tokenizer(prompt, return_tensors="pt").input_ids output = model.generate( input_ids, max_length=max_length, num_return_sequences=num_return_sequences, temperature=0.7  ) return tokenizer.decode(output[0], skip_special_tokens=True) def main(): st.title("Text Generator") prompt = st.text_input("Enter your prompt:") if st.button("Generate"): generated_text = generate_text(prompt) st.text_area("Generated Text:", generated_text) if __name__ == "__main__": main()