ahmed-masry commited on
Commit
5efd720
1 Parent(s): 2bcca18

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForSeq2SeqLM
3
+ import requests
4
+ from PIL import Image
5
+ import torch, os, re, json
6
+ import spaces
7
+
8
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png')
9
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png')
10
+
11
+
12
+
13
+ model = AutoModelForSeq2SeqLM.from_pretrained("ahmed-masry/ChartInstruct-FlanT5-XL", torch_dtype=torch.float16, trust_remote_code=True)
14
+ processor = AutoProcessor.from_pretrained("ahmed-masry/ChartInstruct-FlanT5-XL")
15
+
16
+
17
+ @spaces.GPU
18
+ def predict(image, input_text):
19
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
+ model.to(device)
21
+
22
+ input_prompt = f"<image>\n Question: {input_text} Answer: "
23
+ image = image.convert("RGB")
24
+
25
+ inputs = processor(text=input_prompt, images=image, return_tensors="pt")
26
+ inputs = {k: v.to(device) for k, v in inputs.items()}
27
+
28
+ # change type if pixel_values in inputs to fp16.
29
+ inputs['pixel_values'] = inputs['pixel_values'].to(torch.float16)
30
+
31
+ # Generate
32
+ generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512)
33
+ output_text = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
34
+
35
+ return output_text
36
+
37
+
38
+ image = gr.components.Image(type="pil", label="Chart Image")
39
+ input_prompt = gr.components.Textbox(label="Input Prompt")
40
+ model_output = gr.components.Textbox(label="Model Output")
41
+ examples = [["chart_example_1.png", "Describe the trend of the mortality rates for the Neonatal"],
42
+ ["chart_example_2.png", "What is the share of respondants who prefer Facebook Messenger in the 30-59 age group?"]]
43
+
44
+ title = "Interactive Gradio Demo for ChartInstruct-FlanT5-XL model"
45
+ interface = gr.Interface(fn=predict,
46
+ inputs=[image, input_prompt],
47
+ outputs=model_output,
48
+ examples=examples,
49
+ title=title,
50
+ theme='gradio/soft')
51
+
52
+ interface.launch()