import gradio as gr from transformers import AutoProcessor, AutoModelForSeq2SeqLM import requests from PIL import Image import torch, os, re, json import spaces torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png') model = AutoModelForSeq2SeqLM.from_pretrained("ahmed-masry/ChartInstruct-FlanT5-XL", torch_dtype=torch.float16, trust_remote_code=True) processor = AutoProcessor.from_pretrained("ahmed-masry/ChartInstruct-FlanT5-XL") @spaces.GPU def predict(image, input_text): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_prompt = f"\n Question: {input_text} Answer: " image = image.convert("RGB") inputs = processor(text=input_prompt, images=image, return_tensors="pt") inputs = {k: v.to(device) for k, v in inputs.items()} # change type if pixel_values in inputs to fp16. inputs['pixel_values'] = inputs['pixel_values'].to(torch.float16) # Generate generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512) output_text = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return output_text image = gr.components.Image(type="pil", label="Chart Image") input_prompt = gr.components.Textbox(label="Input Prompt") model_output = gr.components.Textbox(label="Model Output") examples = [["chart_example_1.png", "Describe the trend of the mortality rates for the Neonatal"], ["chart_example_2.png", "What is the share of respondants who prefer Facebook Messenger in the 30-59 age group?"]] title = "Interactive Gradio Demo for ChartInstruct-FlanT5-XL model" interface = gr.Interface(fn=predict, inputs=[image, input_prompt], outputs=model_output, examples=examples, title=title, theme='gradio/soft') interface.launch()