Spaces:
Runtime error
Runtime error
Update semantic_seg_model.py
Browse files- semantic_seg_model.py +316 -316
semantic_seg_model.py
CHANGED
@@ -1,317 +1,317 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import pipeline, AutoImageProcessor, SegformerForSemanticSegmentation
|
3 |
-
from typing import List
|
4 |
-
from PIL import Image, ImageDraw, ImageFont, ImageChops, ImageMorph
|
5 |
-
import numpy as np
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
def find_center_of_non_black_pixels(image):
|
9 |
-
# Get image dimensions
|
10 |
-
width, height = image.size
|
11 |
-
|
12 |
-
# Iterate over the pixels to find the center of the non-black pixels
|
13 |
-
total_x = 0
|
14 |
-
total_y = 0
|
15 |
-
num_non_black_pixels = 0
|
16 |
-
top, left, bottom, right = height, width, 0, 0
|
17 |
-
for y in range(height):
|
18 |
-
for x in range(width):
|
19 |
-
pixel = image.getpixel((x, y))
|
20 |
-
if pixel != (255, 255, 255): # Non-black pixel
|
21 |
-
total_x += x
|
22 |
-
total_y += y
|
23 |
-
num_non_black_pixels += 1
|
24 |
-
top = min(top, y)
|
25 |
-
left = min(left, x)
|
26 |
-
bottom = max(bottom, y)
|
27 |
-
right = max(right, x)
|
28 |
-
|
29 |
-
bbox_width = right - left
|
30 |
-
bbox_height = bottom - top
|
31 |
-
bbox_size = max(bbox_height, bbox_width)
|
32 |
-
# Calculate the center of the non-black pixels
|
33 |
-
if num_non_black_pixels == 0:
|
34 |
-
return None # No non-black pixels found
|
35 |
-
center_x = total_x // num_non_black_pixels
|
36 |
-
center_y = total_y // num_non_black_pixels
|
37 |
-
return (center_x, center_y), bbox_size
|
38 |
-
|
39 |
-
def create_centered_image(image, center, bbox_size):
|
40 |
-
# Get image dimensions
|
41 |
-
width, height = image.size
|
42 |
-
|
43 |
-
# Calculate the offset to center the non-black pixels in the new image
|
44 |
-
offset_x = bbox_size // 2 - center[0]
|
45 |
-
offset_y = bbox_size // 2 - center[1]
|
46 |
-
|
47 |
-
# Create a new image with the same size as the original image
|
48 |
-
new_image = Image.new("RGB", (bbox_size, bbox_size), color=(255, 255, 255))
|
49 |
-
|
50 |
-
# Paste the non-black pixels onto the new image
|
51 |
-
new_image.paste(image, (offset_x, offset_y))
|
52 |
-
|
53 |
-
return new_image
|
54 |
-
|
55 |
-
def ade_palette():
|
56 |
-
"""ADE20K palette that maps each class to RGB values."""
|
57 |
-
return [
|
58 |
-
[180, 120, 20],
|
59 |
-
[180, 120, 120],
|
60 |
-
[6, 230, 230],
|
61 |
-
[80, 50, 50],
|
62 |
-
[4, 200, 3],
|
63 |
-
[120, 120, 80],
|
64 |
-
[140, 140, 140],
|
65 |
-
[204, 5, 255],
|
66 |
-
[230, 230, 230],
|
67 |
-
[4, 250, 7],
|
68 |
-
[224, 5, 255],
|
69 |
-
[235, 255, 7],
|
70 |
-
[150, 5, 61],
|
71 |
-
[120, 120, 70],
|
72 |
-
[8, 255, 51],
|
73 |
-
[255, 6, 82],
|
74 |
-
[143, 255, 140],
|
75 |
-
[204, 255, 4],
|
76 |
-
[255, 51, 7],
|
77 |
-
[204, 70, 3],
|
78 |
-
[0, 102, 200],
|
79 |
-
[61, 230, 250],
|
80 |
-
[255, 6, 51],
|
81 |
-
[11, 102, 255],
|
82 |
-
[255, 7, 71],
|
83 |
-
[255, 9, 224],
|
84 |
-
[9, 7, 230],
|
85 |
-
[220, 220, 220],
|
86 |
-
[255, 9, 92],
|
87 |
-
[112, 9, 255],
|
88 |
-
[8, 255, 214],
|
89 |
-
[7, 255, 224],
|
90 |
-
[255, 184, 6],
|
91 |
-
[10, 255, 71],
|
92 |
-
[255, 41, 10],
|
93 |
-
[7, 255, 255],
|
94 |
-
[224, 255, 8],
|
95 |
-
[102, 8, 255],
|
96 |
-
[255, 61, 6],
|
97 |
-
[255, 194, 7],
|
98 |
-
[255, 122, 8],
|
99 |
-
[0, 255, 20],
|
100 |
-
[255, 8, 41],
|
101 |
-
[255, 5, 153],
|
102 |
-
[6, 51, 255],
|
103 |
-
[235, 12, 255],
|
104 |
-
[160, 150, 20],
|
105 |
-
[0, 163, 255],
|
106 |
-
[140, 140, 140],
|
107 |
-
[250, 10, 15],
|
108 |
-
[20, 255, 0],
|
109 |
-
[31, 255, 0],
|
110 |
-
[255, 31, 0],
|
111 |
-
[255, 224, 0],
|
112 |
-
[153, 255, 0],
|
113 |
-
[0, 0, 255],
|
114 |
-
[255, 71, 0],
|
115 |
-
[0, 235, 255],
|
116 |
-
[0, 173, 255],
|
117 |
-
[31, 0, 255],
|
118 |
-
[11, 200, 200],
|
119 |
-
[255, 82, 0],
|
120 |
-
[0, 255, 245],
|
121 |
-
[0, 61, 255],
|
122 |
-
[0, 255, 112],
|
123 |
-
[0, 255, 133],
|
124 |
-
[255, 0, 0],
|
125 |
-
[255, 163, 0],
|
126 |
-
[255, 102, 0],
|
127 |
-
[194, 255, 0],
|
128 |
-
[0, 143, 255],
|
129 |
-
[51, 255, 0],
|
130 |
-
[0, 82, 255],
|
131 |
-
[0, 255, 41],
|
132 |
-
[0, 255, 173],
|
133 |
-
[10, 0, 255],
|
134 |
-
[173, 255, 0],
|
135 |
-
[0, 255, 153],
|
136 |
-
[255, 92, 0],
|
137 |
-
[255, 0, 255],
|
138 |
-
[255, 0, 245],
|
139 |
-
[255, 0, 102],
|
140 |
-
[255, 173, 0],
|
141 |
-
[255, 0, 20],
|
142 |
-
[255, 184, 184],
|
143 |
-
[0, 31, 255],
|
144 |
-
[0, 255, 61],
|
145 |
-
[0, 71, 255],
|
146 |
-
[255, 0, 204],
|
147 |
-
[0, 255, 194],
|
148 |
-
[0, 255, 82],
|
149 |
-
[0, 10, 255],
|
150 |
-
[0, 112, 255],
|
151 |
-
[51, 0, 255],
|
152 |
-
[0, 194, 255],
|
153 |
-
[0, 122, 255],
|
154 |
-
[0, 255, 163],
|
155 |
-
[255, 153, 0],
|
156 |
-
[0, 255, 10],
|
157 |
-
[255, 112, 0],
|
158 |
-
[143, 255, 0],
|
159 |
-
[82, 0, 255],
|
160 |
-
[163, 255, 0],
|
161 |
-
[255, 235, 0],
|
162 |
-
[8, 184, 170],
|
163 |
-
[133, 0, 255],
|
164 |
-
[0, 255, 92],
|
165 |
-
[184, 0, 255],
|
166 |
-
[255, 0, 31],
|
167 |
-
[0, 184, 255],
|
168 |
-
[0, 214, 255],
|
169 |
-
[255, 0, 112],
|
170 |
-
[92, 255, 0],
|
171 |
-
[0, 224, 255],
|
172 |
-
[112, 224, 255],
|
173 |
-
[70, 184, 160],
|
174 |
-
[163, 0, 255],
|
175 |
-
[153, 0, 255],
|
176 |
-
[71, 255, 0],
|
177 |
-
[255, 0, 163],
|
178 |
-
[255, 204, 0],
|
179 |
-
[255, 0, 143],
|
180 |
-
[0, 255, 235],
|
181 |
-
[133, 255, 0],
|
182 |
-
[255, 0, 235],
|
183 |
-
[245, 0, 255],
|
184 |
-
[255, 0, 122],
|
185 |
-
[255, 245, 0],
|
186 |
-
[10, 190, 212],
|
187 |
-
[214, 255, 0],
|
188 |
-
[0, 204, 255],
|
189 |
-
[20, 0, 255],
|
190 |
-
[255, 255, 0],
|
191 |
-
[0, 153, 255],
|
192 |
-
[0, 41, 255],
|
193 |
-
[0, 255, 204],
|
194 |
-
[41, 0, 255],
|
195 |
-
[41, 255, 0],
|
196 |
-
[173, 0, 255],
|
197 |
-
[0, 245, 255],
|
198 |
-
[71, 0, 255],
|
199 |
-
[122, 0, 255],
|
200 |
-
[0, 255, 184],
|
201 |
-
[0, 92, 255],
|
202 |
-
[184, 255, 0],
|
203 |
-
[0, 133, 255],
|
204 |
-
[255, 214, 0],
|
205 |
-
[25, 194, 194],
|
206 |
-
[102, 255, 0],
|
207 |
-
[92, 0, 255],
|
208 |
-
]
|
209 |
-
|
210 |
-
def label_to_color_image(label, colormap):
|
211 |
-
if label.ndim != 2:
|
212 |
-
raise ValueError("Expect 2-D input label")
|
213 |
-
|
214 |
-
if np.max(label) >= len(colormap):
|
215 |
-
raise ValueError("label value too large.")
|
216 |
-
|
217 |
-
return colormap[label]
|
218 |
-
|
219 |
-
labels_list = []
|
220 |
-
|
221 |
-
with open(r'labels.txt', 'r') as fp:
|
222 |
-
for line in fp:
|
223 |
-
labels_list.append(line[:-1])
|
224 |
-
|
225 |
-
colormap = np.asarray(ade_palette())
|
226 |
-
LABEL_NAMES = np.asarray(labels_list)
|
227 |
-
LABEL_TO_INDEX = {label: i for i, label in enumerate(labels_list)}
|
228 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
229 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP, colormap)
|
230 |
-
FONT = ImageFont.truetype("Arial.ttf", 1000)
|
231 |
-
|
232 |
-
def lift_black_value(image, lift_amount):
|
233 |
-
"""
|
234 |
-
Increase the black values of an image by a specified amount.
|
235 |
-
|
236 |
-
Parameters:
|
237 |
-
image (PIL.Image): The image to adjust.
|
238 |
-
lift_amount (int): The amount to increase the brightness of the darker pixels.
|
239 |
-
|
240 |
-
Returns:
|
241 |
-
PIL.Image: The adjusted image with lifted black values.
|
242 |
-
"""
|
243 |
-
# Ensure that we don't go out of the 0-255 range for any pixel value
|
244 |
-
def adjust_value(value):
|
245 |
-
return min(255, max(0, value + lift_amount))
|
246 |
-
|
247 |
-
# Apply the point function to each channel
|
248 |
-
return image.point(adjust_value)
|
249 |
-
|
250 |
-
torch.set_grad_enabled(False)
|
251 |
-
|
252 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else "cpu"
|
253 |
-
# MIN_AREA_THRESHOLD = 0.01
|
254 |
-
|
255 |
-
pipe = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640")
|
256 |
-
|
257 |
-
def segmentation_inference(
|
258 |
-
image_rgb_pil: Image.Image,
|
259 |
-
savepath: str
|
260 |
-
):
|
261 |
-
outputs = pipe(image_rgb_pil, points_per_batch=32)
|
262 |
-
|
263 |
-
for i, prediction in enumerate(outputs):
|
264 |
-
label = prediction['label']
|
265 |
-
if (label == "floor") | (label == "wall") | (label == "ceiling"):
|
266 |
-
mask = prediction['mask']
|
267 |
-
|
268 |
-
## Save mask
|
269 |
-
label_savepath = savepath + label + str(i) + '.png'
|
270 |
-
fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
|
271 |
-
cutout_image = Image.composite(image_rgb_pil, fill_image, mask)
|
272 |
-
|
273 |
-
# Crop mask
|
274 |
-
center, bbox_size = find_center_of_non_black_pixels(cutout_image)
|
275 |
-
if center is not None:
|
276 |
-
centered_image = create_centered_image(cutout_image, center, bbox_size)
|
277 |
-
centered_image.save(label_savepath)
|
278 |
-
|
279 |
-
## Inspect masks
|
280 |
-
# inverted_mask = ImageChops.invert(mask)
|
281 |
-
# mask_adjusted = lift_black_value(inverted_mask, 100)
|
282 |
-
# color_index = LABEL_TO_INDEX[label]
|
283 |
-
# color = tuple(FULL_COLOR_MAP[color_index][0])
|
284 |
-
# fill_image = Image.new("RGB", image_rgb_pil.size, color=color)
|
285 |
-
# image_rgb_pil = Image.composite(image_rgb_pil, fill_image, mask_adjusted)
|
286 |
-
|
287 |
-
# Display the final image
|
288 |
-
# image_rgb_pil.show()
|
289 |
-
|
290 |
-
def online_segmentation_inference(
|
291 |
-
|
292 |
-
):
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline, AutoImageProcessor, SegformerForSemanticSegmentation
|
3 |
+
from typing import List
|
4 |
+
from PIL import Image, ImageDraw, ImageFont, ImageChops, ImageMorph
|
5 |
+
import numpy as np
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
def find_center_of_non_black_pixels(image):
|
9 |
+
# Get image dimensions
|
10 |
+
width, height = image.size
|
11 |
+
|
12 |
+
# Iterate over the pixels to find the center of the non-black pixels
|
13 |
+
total_x = 0
|
14 |
+
total_y = 0
|
15 |
+
num_non_black_pixels = 0
|
16 |
+
top, left, bottom, right = height, width, 0, 0
|
17 |
+
for y in range(height):
|
18 |
+
for x in range(width):
|
19 |
+
pixel = image.getpixel((x, y))
|
20 |
+
if pixel != (255, 255, 255): # Non-black pixel
|
21 |
+
total_x += x
|
22 |
+
total_y += y
|
23 |
+
num_non_black_pixels += 1
|
24 |
+
top = min(top, y)
|
25 |
+
left = min(left, x)
|
26 |
+
bottom = max(bottom, y)
|
27 |
+
right = max(right, x)
|
28 |
+
|
29 |
+
bbox_width = right - left
|
30 |
+
bbox_height = bottom - top
|
31 |
+
bbox_size = max(bbox_height, bbox_width)
|
32 |
+
# Calculate the center of the non-black pixels
|
33 |
+
if num_non_black_pixels == 0:
|
34 |
+
return None # No non-black pixels found
|
35 |
+
center_x = total_x // num_non_black_pixels
|
36 |
+
center_y = total_y // num_non_black_pixels
|
37 |
+
return (center_x, center_y), bbox_size
|
38 |
+
|
39 |
+
def create_centered_image(image, center, bbox_size):
|
40 |
+
# Get image dimensions
|
41 |
+
width, height = image.size
|
42 |
+
|
43 |
+
# Calculate the offset to center the non-black pixels in the new image
|
44 |
+
offset_x = bbox_size // 2 - center[0]
|
45 |
+
offset_y = bbox_size // 2 - center[1]
|
46 |
+
|
47 |
+
# Create a new image with the same size as the original image
|
48 |
+
new_image = Image.new("RGB", (bbox_size, bbox_size), color=(255, 255, 255))
|
49 |
+
|
50 |
+
# Paste the non-black pixels onto the new image
|
51 |
+
new_image.paste(image, (offset_x, offset_y))
|
52 |
+
|
53 |
+
return new_image
|
54 |
+
|
55 |
+
def ade_palette():
|
56 |
+
"""ADE20K palette that maps each class to RGB values."""
|
57 |
+
return [
|
58 |
+
[180, 120, 20],
|
59 |
+
[180, 120, 120],
|
60 |
+
[6, 230, 230],
|
61 |
+
[80, 50, 50],
|
62 |
+
[4, 200, 3],
|
63 |
+
[120, 120, 80],
|
64 |
+
[140, 140, 140],
|
65 |
+
[204, 5, 255],
|
66 |
+
[230, 230, 230],
|
67 |
+
[4, 250, 7],
|
68 |
+
[224, 5, 255],
|
69 |
+
[235, 255, 7],
|
70 |
+
[150, 5, 61],
|
71 |
+
[120, 120, 70],
|
72 |
+
[8, 255, 51],
|
73 |
+
[255, 6, 82],
|
74 |
+
[143, 255, 140],
|
75 |
+
[204, 255, 4],
|
76 |
+
[255, 51, 7],
|
77 |
+
[204, 70, 3],
|
78 |
+
[0, 102, 200],
|
79 |
+
[61, 230, 250],
|
80 |
+
[255, 6, 51],
|
81 |
+
[11, 102, 255],
|
82 |
+
[255, 7, 71],
|
83 |
+
[255, 9, 224],
|
84 |
+
[9, 7, 230],
|
85 |
+
[220, 220, 220],
|
86 |
+
[255, 9, 92],
|
87 |
+
[112, 9, 255],
|
88 |
+
[8, 255, 214],
|
89 |
+
[7, 255, 224],
|
90 |
+
[255, 184, 6],
|
91 |
+
[10, 255, 71],
|
92 |
+
[255, 41, 10],
|
93 |
+
[7, 255, 255],
|
94 |
+
[224, 255, 8],
|
95 |
+
[102, 8, 255],
|
96 |
+
[255, 61, 6],
|
97 |
+
[255, 194, 7],
|
98 |
+
[255, 122, 8],
|
99 |
+
[0, 255, 20],
|
100 |
+
[255, 8, 41],
|
101 |
+
[255, 5, 153],
|
102 |
+
[6, 51, 255],
|
103 |
+
[235, 12, 255],
|
104 |
+
[160, 150, 20],
|
105 |
+
[0, 163, 255],
|
106 |
+
[140, 140, 140],
|
107 |
+
[250, 10, 15],
|
108 |
+
[20, 255, 0],
|
109 |
+
[31, 255, 0],
|
110 |
+
[255, 31, 0],
|
111 |
+
[255, 224, 0],
|
112 |
+
[153, 255, 0],
|
113 |
+
[0, 0, 255],
|
114 |
+
[255, 71, 0],
|
115 |
+
[0, 235, 255],
|
116 |
+
[0, 173, 255],
|
117 |
+
[31, 0, 255],
|
118 |
+
[11, 200, 200],
|
119 |
+
[255, 82, 0],
|
120 |
+
[0, 255, 245],
|
121 |
+
[0, 61, 255],
|
122 |
+
[0, 255, 112],
|
123 |
+
[0, 255, 133],
|
124 |
+
[255, 0, 0],
|
125 |
+
[255, 163, 0],
|
126 |
+
[255, 102, 0],
|
127 |
+
[194, 255, 0],
|
128 |
+
[0, 143, 255],
|
129 |
+
[51, 255, 0],
|
130 |
+
[0, 82, 255],
|
131 |
+
[0, 255, 41],
|
132 |
+
[0, 255, 173],
|
133 |
+
[10, 0, 255],
|
134 |
+
[173, 255, 0],
|
135 |
+
[0, 255, 153],
|
136 |
+
[255, 92, 0],
|
137 |
+
[255, 0, 255],
|
138 |
+
[255, 0, 245],
|
139 |
+
[255, 0, 102],
|
140 |
+
[255, 173, 0],
|
141 |
+
[255, 0, 20],
|
142 |
+
[255, 184, 184],
|
143 |
+
[0, 31, 255],
|
144 |
+
[0, 255, 61],
|
145 |
+
[0, 71, 255],
|
146 |
+
[255, 0, 204],
|
147 |
+
[0, 255, 194],
|
148 |
+
[0, 255, 82],
|
149 |
+
[0, 10, 255],
|
150 |
+
[0, 112, 255],
|
151 |
+
[51, 0, 255],
|
152 |
+
[0, 194, 255],
|
153 |
+
[0, 122, 255],
|
154 |
+
[0, 255, 163],
|
155 |
+
[255, 153, 0],
|
156 |
+
[0, 255, 10],
|
157 |
+
[255, 112, 0],
|
158 |
+
[143, 255, 0],
|
159 |
+
[82, 0, 255],
|
160 |
+
[163, 255, 0],
|
161 |
+
[255, 235, 0],
|
162 |
+
[8, 184, 170],
|
163 |
+
[133, 0, 255],
|
164 |
+
[0, 255, 92],
|
165 |
+
[184, 0, 255],
|
166 |
+
[255, 0, 31],
|
167 |
+
[0, 184, 255],
|
168 |
+
[0, 214, 255],
|
169 |
+
[255, 0, 112],
|
170 |
+
[92, 255, 0],
|
171 |
+
[0, 224, 255],
|
172 |
+
[112, 224, 255],
|
173 |
+
[70, 184, 160],
|
174 |
+
[163, 0, 255],
|
175 |
+
[153, 0, 255],
|
176 |
+
[71, 255, 0],
|
177 |
+
[255, 0, 163],
|
178 |
+
[255, 204, 0],
|
179 |
+
[255, 0, 143],
|
180 |
+
[0, 255, 235],
|
181 |
+
[133, 255, 0],
|
182 |
+
[255, 0, 235],
|
183 |
+
[245, 0, 255],
|
184 |
+
[255, 0, 122],
|
185 |
+
[255, 245, 0],
|
186 |
+
[10, 190, 212],
|
187 |
+
[214, 255, 0],
|
188 |
+
[0, 204, 255],
|
189 |
+
[20, 0, 255],
|
190 |
+
[255, 255, 0],
|
191 |
+
[0, 153, 255],
|
192 |
+
[0, 41, 255],
|
193 |
+
[0, 255, 204],
|
194 |
+
[41, 0, 255],
|
195 |
+
[41, 255, 0],
|
196 |
+
[173, 0, 255],
|
197 |
+
[0, 245, 255],
|
198 |
+
[71, 0, 255],
|
199 |
+
[122, 0, 255],
|
200 |
+
[0, 255, 184],
|
201 |
+
[0, 92, 255],
|
202 |
+
[184, 255, 0],
|
203 |
+
[0, 133, 255],
|
204 |
+
[255, 214, 0],
|
205 |
+
[25, 194, 194],
|
206 |
+
[102, 255, 0],
|
207 |
+
[92, 0, 255],
|
208 |
+
]
|
209 |
+
|
210 |
+
def label_to_color_image(label, colormap):
|
211 |
+
if label.ndim != 2:
|
212 |
+
raise ValueError("Expect 2-D input label")
|
213 |
+
|
214 |
+
if np.max(label) >= len(colormap):
|
215 |
+
raise ValueError("label value too large.")
|
216 |
+
|
217 |
+
return colormap[label]
|
218 |
+
|
219 |
+
labels_list = []
|
220 |
+
|
221 |
+
with open(r'labels.txt', 'r') as fp:
|
222 |
+
for line in fp:
|
223 |
+
labels_list.append(line[:-1])
|
224 |
+
|
225 |
+
colormap = np.asarray(ade_palette())
|
226 |
+
LABEL_NAMES = np.asarray(labels_list)
|
227 |
+
LABEL_TO_INDEX = {label: i for i, label in enumerate(labels_list)}
|
228 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
229 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP, colormap)
|
230 |
+
# FONT = ImageFont.truetype("Arial.ttf", 1000)
|
231 |
+
|
232 |
+
def lift_black_value(image, lift_amount):
|
233 |
+
"""
|
234 |
+
Increase the black values of an image by a specified amount.
|
235 |
+
|
236 |
+
Parameters:
|
237 |
+
image (PIL.Image): The image to adjust.
|
238 |
+
lift_amount (int): The amount to increase the brightness of the darker pixels.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
PIL.Image: The adjusted image with lifted black values.
|
242 |
+
"""
|
243 |
+
# Ensure that we don't go out of the 0-255 range for any pixel value
|
244 |
+
def adjust_value(value):
|
245 |
+
return min(255, max(0, value + lift_amount))
|
246 |
+
|
247 |
+
# Apply the point function to each channel
|
248 |
+
return image.point(adjust_value)
|
249 |
+
|
250 |
+
torch.set_grad_enabled(False)
|
251 |
+
|
252 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else "cpu"
|
253 |
+
# MIN_AREA_THRESHOLD = 0.01
|
254 |
+
|
255 |
+
pipe = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640")
|
256 |
+
|
257 |
+
def segmentation_inference(
|
258 |
+
image_rgb_pil: Image.Image,
|
259 |
+
savepath: str
|
260 |
+
):
|
261 |
+
outputs = pipe(image_rgb_pil, points_per_batch=32)
|
262 |
+
|
263 |
+
for i, prediction in enumerate(outputs):
|
264 |
+
label = prediction['label']
|
265 |
+
if (label == "floor") | (label == "wall") | (label == "ceiling"):
|
266 |
+
mask = prediction['mask']
|
267 |
+
|
268 |
+
## Save mask
|
269 |
+
label_savepath = savepath + label + str(i) + '.png'
|
270 |
+
fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
|
271 |
+
cutout_image = Image.composite(image_rgb_pil, fill_image, mask)
|
272 |
+
|
273 |
+
# Crop mask
|
274 |
+
center, bbox_size = find_center_of_non_black_pixels(cutout_image)
|
275 |
+
if center is not None:
|
276 |
+
centered_image = create_centered_image(cutout_image, center, bbox_size)
|
277 |
+
centered_image.save(label_savepath)
|
278 |
+
|
279 |
+
## Inspect masks
|
280 |
+
# inverted_mask = ImageChops.invert(mask)
|
281 |
+
# mask_adjusted = lift_black_value(inverted_mask, 100)
|
282 |
+
# color_index = LABEL_TO_INDEX[label]
|
283 |
+
# color = tuple(FULL_COLOR_MAP[color_index][0])
|
284 |
+
# fill_image = Image.new("RGB", image_rgb_pil.size, color=color)
|
285 |
+
# image_rgb_pil = Image.composite(image_rgb_pil, fill_image, mask_adjusted)
|
286 |
+
|
287 |
+
# Display the final image
|
288 |
+
# image_rgb_pil.show()
|
289 |
+
|
290 |
+
# def online_segmentation_inference(
|
291 |
+
# image_rgb_pil: Image.Image
|
292 |
+
# ):
|
293 |
+
# outputs = pipe(image_rgb_pil, points_per_batch=32)
|
294 |
+
|
295 |
+
# # Create an image dictionary
|
296 |
+
# image_dict = {"image": [], "label":[]}
|
297 |
+
|
298 |
+
# for i, prediction in enumerate(outputs):
|
299 |
+
# label = prediction['label']
|
300 |
+
# if (label == "floor") | (label == "wall") | (label == "ceiling"):
|
301 |
+
# mask = prediction['mask']
|
302 |
+
|
303 |
+
# fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
|
304 |
+
# cutout_image = Image.composite(image_rgb_pil, fill_image, mask)
|
305 |
+
|
306 |
+
# # Crop mask
|
307 |
+
# center, bbox_size = find_center_of_non_black_pixels(cutout_image)
|
308 |
+
# if center is not None:
|
309 |
+
# centered_image = create_centered_image(cutout_image, center, bbox_size)
|
310 |
+
|
311 |
+
# # Add image to image dictionary
|
312 |
+
# image_dict["image"].append(centered_image)
|
313 |
+
# image_dict["label"].append(label)
|
314 |
+
|
315 |
+
# segmented_ds = datasets.Dataset.from_dict(image_dict).cast_column("image", datasets.Image())
|
316 |
+
# return segmented_ds
|
317 |
|