Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,38 +7,49 @@ from PIL import Image
|
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from semantic_seg_model import segmentation_inference
|
9 |
from similarity_inference import similarity_inference
|
10 |
-
import json
|
11 |
from gradio_client import Client, file
|
|
|
|
|
|
|
12 |
|
13 |
app = FastAPI(docs_url="/")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
## Initialize the pipeline
|
16 |
input_images_dir = "image/"
|
17 |
temp_processing_dir = input_images_dir + "processed/"
|
18 |
|
19 |
-
# Define a function to handle the POST request at `
|
20 |
-
@app.post("/
|
21 |
-
def
|
22 |
"""
|
23 |
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
24 |
top k materials similar to the wall, ceiling, and floor.
|
25 |
"""
|
26 |
try:
|
27 |
# load image
|
28 |
-
image_path = os.path.join(input_images_dir, image.
|
29 |
with open(image_path, "wb") as buffer:
|
30 |
shutil.copyfileobj(image.file, buffer)
|
31 |
image = Image.open(image_path)
|
32 |
-
|
33 |
# segment into components
|
34 |
segmentation_inference(image, temp_processing_dir)
|
35 |
-
|
36 |
# identify similar materials for each component
|
37 |
-
|
38 |
-
print(
|
39 |
|
40 |
# Return the urls in a JSON response
|
41 |
-
return
|
42 |
|
43 |
except Exception as e:
|
44 |
print(str(e))
|
@@ -48,7 +59,7 @@ def imageAnalyzer(image: UploadFile = File(...)):
|
|
48 |
client = Client("MykolaL/StableDesign")
|
49 |
|
50 |
@app.post("/image-render")
|
51 |
-
def
|
52 |
"""
|
53 |
Makes a prediction using the "StableDesign" model hosted on a server.
|
54 |
|
@@ -56,39 +67,41 @@ def imageRender(prompt: str, image: UploadFile = File(...)):
|
|
56 |
The prediction result.
|
57 |
"""
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
result = client.predict(
|
67 |
image=file(image_path),
|
68 |
text=prompt,
|
69 |
num_steps=50,
|
70 |
guidance_scale=10,
|
71 |
seed=1111664444,
|
72 |
-
strength=
|
73 |
a_prompt="interior design, 4K, high resolution, photorealistic",
|
74 |
n_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
|
75 |
img_size=768,
|
76 |
api_name="/on_submit"
|
77 |
)
|
78 |
-
|
79 |
-
|
|
|
80 |
raise HTTPException(status_code=404, detail="Image not found")
|
81 |
|
82 |
# Open the image file and convert it to base64
|
83 |
-
with open(
|
84 |
base64_str = base64.b64encode(img_file.read()).decode('utf-8')
|
85 |
-
|
86 |
return JSONResponse(content={"image": base64_str}, status_code=200)
|
87 |
except Exception as e:
|
88 |
print(str(e))
|
89 |
raise HTTPException(status_code=500, detail=str(e))
|
90 |
-
|
91 |
-
|
92 |
-
# @app.get("/")
|
93 |
-
# def test():
|
94 |
-
# return {"Hello": "World"}
|
|
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from semantic_seg_model import segmentation_inference
|
9 |
from similarity_inference import similarity_inference
|
|
|
10 |
from gradio_client import Client, file
|
11 |
+
from datetime import datetime
|
12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
13 |
+
|
14 |
|
15 |
app = FastAPI(docs_url="/")
|
16 |
|
17 |
+
allowed_origins = ["*"]
|
18 |
+
app.add_middleware(
|
19 |
+
CORSMiddleware,
|
20 |
+
allow_origins=allowed_origins,
|
21 |
+
allow_credentials=True,
|
22 |
+
allow_methods=["GET", "POST", "PUT", "DELETE"],
|
23 |
+
allow_headers=["*"],
|
24 |
+
)
|
25 |
+
|
26 |
## Initialize the pipeline
|
27 |
input_images_dir = "image/"
|
28 |
temp_processing_dir = input_images_dir + "processed/"
|
29 |
|
30 |
+
# Define a function to handle the POST request at `image-analyzer`
|
31 |
+
@app.post("/image-analyzer")
|
32 |
+
def image_analyzer(image: UploadFile = File(...)):
|
33 |
"""
|
34 |
This function takes in an image filepath and will return the PolyHaven url addresses of the
|
35 |
top k materials similar to the wall, ceiling, and floor.
|
36 |
"""
|
37 |
try:
|
38 |
# load image
|
39 |
+
image_path = os.path.join(input_images_dir, "image.png")
|
40 |
with open(image_path, "wb") as buffer:
|
41 |
shutil.copyfileobj(image.file, buffer)
|
42 |
image = Image.open(image_path)
|
43 |
+
print("image loaded successfully. Processing image for segmentation and similarity inference...", datetime.now())
|
44 |
# segment into components
|
45 |
segmentation_inference(image, temp_processing_dir)
|
46 |
+
print("image segmented successfully. Starting similarity inference...", datetime.now())
|
47 |
# identify similar materials for each component
|
48 |
+
matching_textures = similarity_inference(temp_processing_dir)
|
49 |
+
print("done", datetime.now())
|
50 |
|
51 |
# Return the urls in a JSON response
|
52 |
+
return matching_textures
|
53 |
|
54 |
except Exception as e:
|
55 |
print(str(e))
|
|
|
59 |
client = Client("MykolaL/StableDesign")
|
60 |
|
61 |
@app.post("/image-render")
|
62 |
+
async def image_render(prompt: str, image: UploadFile = File(...)):
|
63 |
"""
|
64 |
Makes a prediction using the "StableDesign" model hosted on a server.
|
65 |
|
|
|
67 |
The prediction result.
|
68 |
"""
|
69 |
try:
|
70 |
+
print(f"recieved prompt: {prompt} and image: {image}")
|
71 |
+
image_path = os.path.join(input_images_dir, image.filename+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+".png")
|
72 |
+
contents = await image.read()
|
73 |
+
# Remove the prefix "data:image/png;base64,"
|
74 |
+
image_data = contents.split(b";base64,")[1]
|
75 |
+
# Decode base64 data
|
76 |
+
decoded_image = base64.b64decode(image_data)
|
77 |
+
image = Image.open(io.BytesIO(decoded_image))
|
78 |
+
# Convert image to grayscale
|
79 |
+
grayscale_image = image.convert('L')
|
80 |
+
# Save the processed image to the specified path
|
81 |
+
grayscale_image.save(image_path)
|
82 |
result = client.predict(
|
83 |
image=file(image_path),
|
84 |
text=prompt,
|
85 |
num_steps=50,
|
86 |
guidance_scale=10,
|
87 |
seed=1111664444,
|
88 |
+
strength=1,
|
89 |
a_prompt="interior design, 4K, high resolution, photorealistic",
|
90 |
n_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
|
91 |
img_size=768,
|
92 |
api_name="/on_submit"
|
93 |
)
|
94 |
+
|
95 |
+
new_image_path = result
|
96 |
+
if not os.path.exists(new_image_path):
|
97 |
raise HTTPException(status_code=404, detail="Image not found")
|
98 |
|
99 |
# Open the image file and convert it to base64
|
100 |
+
with open(new_image_path, "rb") as img_file:
|
101 |
base64_str = base64.b64encode(img_file.read()).decode('utf-8')
|
102 |
+
|
103 |
return JSONResponse(content={"image": base64_str}, status_code=200)
|
104 |
except Exception as e:
|
105 |
print(str(e))
|
106 |
raise HTTPException(status_code=500, detail=str(e))
|
107 |
+
|
|
|
|
|
|
|
|