Spaces:
Sleeping
Sleeping
File size: 3,690 Bytes
4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 c96ffbf f4d5676 c96ffbf f4d5676 c96ffbf f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 f4d5676 4c45d43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
import numpy as np
import cv2
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("aico/TrOCR-MNIST")
def _group_rectangles(rec):
"""
Uion intersecting rectangles.
Args:
rec - list of rectangles in form [x, y, w, h]
Return:
list of grouped ractangles
"""
tested = [False for i in range(len(rec))]
final = []
i = 0
while i < len(rec):
if not tested[i]:
j = i+1
while j < len(rec):
if not tested[j] and intersect_area(rec[i], rec[j]):
rec[i] = union(rec[i], rec[j])
tested[j] = True
j = i
j += 1
final += [rec[i]]
i += 1
return final
def process_image(image):
bounding_boxes = []
generated_text_list = []
#boundingBoxes_2 = []
#print(np.shape(image))
#print(image)
#dim = (28,28)
#resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
#rint(image.astype('uint8'))
#cv2.imwrite("image.png",image.astype('uint8'),(28, 28))
#mask = np.zeros(np.shape(image), dtype=np.uint8)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
#gray = cv2.cvtColor(thresh, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
(cnts, _) = contours.sort_contours(cnts, method="left-to-right")
dim = (28, 28)
for c in cnts:
area = cv2.contourArea(c)
#print(area)
#if area < 120:
bounding_boxes.append(cv2.boundingRect(c))
#print("for loop bb: ",bounding_boxes)
boundingBoxes_filter = [i for i in bounding_boxes if i != (0 , 0, 128, 128)]
boundingBoxes = _group_rectangles(boundingBoxes_filter)
#print(boundingBoxes)
#
#print(boundingBoxes_2)
for (x, y, w, h) in boundingBoxes:
#print(x,y,w,h)
ROI = thresh[y:y+h, x:x+w]
ROI2 = cv2.bitwise_not(ROI)
borderoutput = cv2.copyMakeBorder(ROI2, 30, 30, 30, 30, cv2.BORDER_CONSTANT, value=[0, 0, 0])
resized = cv2.resize(borderoutput, dim, interpolation = cv2.INTER_AREA)
cv2.imwrite('ROI_{}.png'.format(x), resized)
#imageinv = cv2.bitwise_not(resized)
img = Image.fromarray(resized.astype('uint8')).convert("RGB")
pixel_values = processor(img, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
#print(generated_text)
generated_text_list.append(generated_text)
#img = Image.fromarray(image.astype('uint8')).convert("RGB")
#img = Image.open("image.png").convert("RGB")
#print(img)
# prepare image
#pixel_values = processor(img, return_tensors="pt").pixel_values
# generate (no beam search)
#generated_ids = model.generate(pixel_values)
# decode
#generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return ''.join(generated_text_list)
#return generated_text
title = "Interactive demo: Single Digits MNIST"
description = "Aico - University Utrecht"
iface = gr.Interface(fn=process_image,
inputs="sketchpad",
outputs="label",
title = title,
description = description)
iface.launch(debug=True) |