Spaces:
Runtime error
Runtime error
import logging | |
from typing import List, Tuple, Dict | |
import streamlit as st | |
import torch | |
import gc | |
import time | |
import numpy as np | |
from PIL import Image | |
from time import perf_counter | |
from contextlib import contextmanager | |
from scipy.signal import fftconvolve | |
from PIL import ImageFilter | |
from diffusers import ControlNetModel, UniPCMultistepScheduler | |
from diffusers import StableDiffusionInpaintPipeline | |
from config import WIDTH, HEIGHT | |
from stable_diffusion_controlnet_inpaint_img2img import ( | |
StableDiffusionControlNetInpaintImg2ImgPipeline, | |
) | |
from helpers import flush | |
LOGGING = logging.getLogger(__name__) | |
class ControlNetPipeline: | |
def __init__(self): | |
self.in_use = False | |
self.controlnet = ControlNetModel.from_pretrained( | |
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16 | |
) | |
self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", | |
controlnet=self.controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config( | |
self.pipe.scheduler.config | |
) | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.pipe = self.pipe.to("cuda") | |
self.waiting_queue = [] | |
self.count = 0 | |
def queue_size(self): | |
return len(self.waiting_queue) | |
def __call__(self, **kwargs): | |
self.count += 1 | |
number = self.count | |
self.waiting_queue.append(number) | |
# wait until the next number in the queue is the current number | |
# while self.waiting_queue[0] != number: | |
# print(f"Wait for your turn {number} in queue {self.waiting_queue}") | |
# time.sleep(0.5) | |
# pass | |
# it's your turn, so remove the number from the queue | |
# and call the function | |
print("It's the turn of", self.count) | |
results = self.pipe(**kwargs) | |
self.waiting_queue.pop(0) | |
flush() | |
return results | |
class SDPipeline: | |
def __init__(self): | |
self.pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-inpainting", | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.pipe = self.pipe.to("cuda") | |
self.waiting_queue = [] | |
self.count = 0 | |
def queue_size(self): | |
return len(self.waiting_queue) | |
def __call__(self, **kwargs): | |
self.count += 1 | |
number = self.count | |
self.waiting_queue.append(number) | |
# wait until the next number in the queue is the current number | |
# while self.waiting_queue[0] != number: | |
# print(f"Wait for your turn {number} in queue {self.waiting_queue}") | |
# time.sleep(0.5) | |
# pass | |
# it's your turn, so remove the number from the queue | |
# and call the function | |
print("It's the turn of", self.count) | |
results = self.pipe(**kwargs) | |
self.waiting_queue.pop(0) | |
flush() | |
return results | |
def get_controlnet(): | |
"""Method to load the controlnet model | |
Returns: | |
ControlNetModel: controlnet model | |
""" | |
pipe = ControlNetPipeline() | |
return pipe | |
def get_inpainting_pipeline(): | |
"""Method to load the inpainting pipeline | |
Returns: | |
StableDiffusionInpaintPipeline: inpainting pipeline | |
""" | |
pipe = SDPipeline() | |
return pipe | |