TakahashiShotaro commited on
Commit
d1ddda1
1 Parent(s): 311538b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +193 -295
app.py CHANGED
@@ -9,25 +9,43 @@ import time
9
 
10
  from models import make_image_controlnet, make_inpainting
11
  from segmentation import segment_image
12
- from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
 
 
 
 
 
 
 
 
13
  from palette import COLOR_MAPPING_CATEGORY
14
  from preprocessing import preprocess_seg_mask, get_image, get_mask
15
- from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
 
 
 
 
 
 
16
  # wide layout
17
  st.set_page_config(layout="wide")
18
 
19
 
20
  def on_upload() -> None:
21
  """Upload image to the canvas."""
22
- if 'input_image' in st.session_state and st.session_state['input_image'] is not None:
23
- image = Image.open(st.session_state['input_image']).convert('RGB')
24
- st.session_state['initial_image'] = image
25
- if 'seg' in st.session_state:
26
- del st.session_state['seg']
27
- if 'unique_colors' in st.session_state:
28
- del st.session_state['unique_colors']
29
- if 'output_image' in st.session_state:
30
- del st.session_state['output_image']
 
 
 
 
31
 
32
  def make_image_row(image_0, image_1):
33
  col_0, col_1 = st.columns(2)
@@ -42,17 +60,19 @@ def check_reset_state() -> bool:
42
  Returns:
43
  bool: True if the UI elements need to be reset, False otherwise
44
  """
45
- if ('reset_canvas' in st.session_state and st.session_state['reset_canvas']):
46
- st.session_state['reset_canvas'] = False
47
  return True
48
- st.session_state['reset_canvas'] = False
49
  return False
50
 
51
 
52
- def move_image(source: Union[str, Image.Image],
53
- dest: str,
54
- rerun: bool = True,
55
- remove_state: bool = True) -> None:
 
 
56
  """Move image from source to destination.
57
  Args:
58
  source (Union[str, Image.Image]): source image
@@ -60,24 +80,26 @@ def move_image(source: Union[str, Image.Image],
60
  rerun (bool, optional): rerun streamlit. Defaults to True.
61
  remove_state (bool, optional): remove the canvas state. Defaults to True.
62
  """
63
- source_image = source if isinstance(source, Image.Image) else st.session_state[source]
 
 
64
 
65
  if remove_state:
66
- st.session_state['reset_canvas'] = True
67
- if 'seg' in st.session_state:
68
- del st.session_state['seg']
69
- if 'unique_colors' in st.session_state:
70
- del st.session_state['unique_colors']
71
 
72
  st.session_state[dest] = source_image
73
- st.session_state['dest'] = source_image
74
  if rerun:
75
  st.experimental_rerun()
76
 
77
 
78
  def on_change_radio() -> None:
79
  """Reset the UI elements when the radio button is changed."""
80
- st.session_state['reset_canvas'] = True
81
 
82
 
83
  def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
@@ -85,311 +107,187 @@ def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
85
  fill_color=canvas_color,
86
  stroke_color=canvas_color,
87
  background_color="#FFFFFF",
88
- background_image=st.session_state['initial_image'] if 'initial_image' in st.session_state else None,
 
 
89
  stroke_width=brush,
90
- initial_drawing={'version': '4.4.0', 'objects': []} if _reset_state else None,
91
  update_streamlit=True,
92
  height=512,
93
  width=512,
94
  drawing_mode=paint_mode,
95
  key="canvas",
96
  )
97
- return canvas_dict
98
-
99
- def make_prompt_row():
100
- col_0_0, col_0_1 = st.columns(2)
101
- with col_0_0:
102
- st.text_input(label="Positive prompt", value="a photograph of a room, interior design, 4k, high resolution", key='positive_prompt')
103
- with col_0_1:
104
- st.text_input(label="Negative prompt", value="lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly", key='negative_prompt')
105
-
106
- def make_sidebar():
107
- with st.sidebar:
108
- input_image = st.file_uploader("", type=["png", "jpg"], key='input_image', on_change=on_upload)
109
- generation_mode = st.selectbox("Generation mode", ["Regenerate",
110
- "Segmentation",
111
- "Inpainting"], on_change=on_change_radio)
112
-
113
-
114
- if generation_mode == "Segmentation":
115
- paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
116
- if paint_mode == "freedraw":
117
- brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
118
- else:
119
- brush = 5
120
-
121
- category_chooser = st.sidebar.selectbox("Filter on category", list(
122
- COLOR_MAPPING_CATEGORY.keys()), index=0, key='category_chooser')
123
-
124
- chosen_colors = list(COLOR_MAPPING_CATEGORY[category_chooser].keys())
125
-
126
- color_chooser = st.sidebar.selectbox(
127
- "Choose a color", chosen_colors, index=0, format_func=map_colors, key='color_chooser'
128
- )
129
 
130
- elif generation_mode == "Regenerate":
131
- color_chooser = "rgba(0, 0, 0, 0.0)"
132
- paint_mode = 'freedraw'
133
- brush = 0
134
 
135
- else:
136
- paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
137
- if paint_mode == "freedraw":
138
- brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
139
- else:
140
- brush = 5
141
 
142
- color_chooser = "#000000"
143
- return input_image, generation_mode, brush, color_chooser, paint_mode
 
 
144
 
 
 
145
 
146
- def make_output_image():
147
- if 'output_image' in st.session_state:
148
- output_image = st.session_state['output_image']
149
- if isinstance(output_image, np.ndarray):
150
- output_image = Image.fromarray(output_image)
151
 
152
- if isinstance(output_image, Image.Image):
153
- output_image = output_image.resize((512, 512))
154
  else:
155
- output_image = Image.new('RGB', (512, 512), (255, 255, 255))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
- st.write("#### Output image")
158
- st.image(output_image, width=512)
159
- if st.button("Move to input image"):
160
- move_image('output_image', 'initial_image', remove_state=True, rerun=True)
161
 
162
  def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode):
163
- st.write("#### Input image")
164
  canvas_dict = make_canvas_dict(
165
  canvas_color=canvas_color,
166
  paint_mode=paint_mode,
167
  brush=brush,
168
- _reset_state=_reset_state
169
  )
170
- if generation_mode == "Segmentation":
171
- canvas = st_canvas(
172
- **canvas_dict,
173
- )
174
 
175
- if st.button("generate image", key='generate_button'):
176
- image = get_image()
177
- print("Preparing image segmentation")
178
- real_seg = segment_image(Image.fromarray(image))
179
- mask, seg = preprocess_seg_mask(canvas, real_seg)
180
-
181
- with st.spinner(text="Generating image"):
182
- print("Making image")
183
- result_image = make_image_controlnet(image=image,
184
- mask_image=mask,
185
- controlnet_conditioning_image=seg,
186
- positive_prompt=st.session_state['positive_prompt'],
187
- negative_prompt=st.session_state['negative_prompt'],
188
- seed=random.randint(0, 100000) # nosec
189
- )
190
- if isinstance(result_image, np.ndarray):
191
- result_image = Image.fromarray(result_image)
192
- st.session_state['output_image'] = result_image
193
-
194
-
195
- elif generation_mode == "Regenerate":
196
- canvas = st_canvas(
197
- **canvas_dict,
198
- )
199
- if 'seg' not in st.session_state:
200
- with st.spinner(text="Preparing image segmentation"):
201
- image = get_image()
202
- real_seg = np.array(segment_image(Image.fromarray(image)))
203
- st.session_state['seg'] = real_seg
204
-
205
- if 'unique_colors' not in st.session_state:
206
- real_seg = st.session_state['seg']
207
- unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
208
- unique_colors = [tuple(color) for color in unique_colors]
209
- st.session_state['unique_colors'] = unique_colors
210
-
211
- with st.expander("Explanation", expanded=True):
212
- st.write("This mode allows you to choose which objects you want to re-generate in the image. "
213
- "Use the selection dropdown to add or remove objects. If you are ready, press the generate button"
214
- " to generate the image, which can take up to 30 seconds. If you want to improve the generated image, click"
215
- " the 'move image to input' button."
216
- )
217
-
218
- chosen_colors = st.multiselect(
219
- label="Choose which concepts you want to regenerate in the image",
220
- options=st.session_state['unique_colors'],
221
- key='chosen_colors',
222
- default=st.session_state['unique_colors'],
223
- format_func=map_colors_rgb,
224
- )
225
-
226
- if st.button("generate image", key='generate_button'):
227
  image = get_image()
228
- print(chosen_colors)
229
-
230
- segmentation = st.session_state['seg']
231
- mask = np.zeros_like(segmentation)
232
- for color in chosen_colors:
233
- # if the color is in the segmentation, set mask to 1
234
- mask[np.where((segmentation == color).all(axis=2))] = 1
235
-
236
- with st.spinner(text="Generating image"):
237
- result_image = make_image_controlnet(image=image,
238
- mask_image=mask,
239
- controlnet_conditioning_image=segmentation,
240
- positive_prompt=st.session_state['positive_prompt'],
241
- negative_prompt=st.session_state['negative_prompt'],
242
- seed=random.randint(0, 100000) # nosec
243
- )
244
- if isinstance(result_image, np.ndarray):
245
- result_image = Image.fromarray(result_image)
246
- st.session_state['output_image'] = result_image
247
-
248
- elif generation_mode == "Inpainting":
249
- image = get_image()
250
-
251
- canvas = st_canvas(
252
- **canvas_dict,
253
- )
254
 
255
- if st.button("generate images", key='generate_button'):
256
- canvas_mask = canvas.image_data
257
- if not isinstance(canvas_mask, np.ndarray):
258
- canvas_mask = np.array(canvas_mask)
259
- mask = get_mask(canvas_mask)
260
-
261
- with st.spinner(text="Generating new images"):
262
- print("Making image")
263
- result_image = make_inpainting(positive_prompt=st.session_state['positive_prompt'],
264
- image=Image.fromarray(image),
265
- mask_image=mask,
266
- negative_prompt=st.session_state['negative_prompt'],
267
- )
268
- if isinstance(result_image, np.ndarray):
269
- result_image = Image.fromarray(result_image)
270
- st.session_state['output_image'] = result_image
271
 
272
  def main():
273
  # center text
274
- st.write("## Controlnet sprint - interior design", unsafe_allow_html=True)
275
-
276
- input_image, generation_mode, brush, color_chooser, paint_mode = make_sidebar()
277
-
278
- # check if there is an input_image
279
- if not ('initial_image' in st.session_state and st.session_state['initial_image'] is not None):
280
- st.success("Upload an image to start")
281
- st.write("Welcome to the interior design controlnet demo! "
282
- "You can start by uploading a picture of your room, after which you will see "
283
- "a good variety of options to edit your current room to generate the room of your dreams! "
284
- "You can choose between inpainting, Segmentation and re-generating objects, which "
285
- "use our custom trained controlnet model. The main idea is that you can iterate over the "
286
- "generated images, because you will rarely get something perfect in one step (although it's possible). "
287
- "We added functionality to load in the generated image into the input, so you can keep "
288
- "changing the image until you are satisfied."
289
- )
290
- with st.expander("Useful information", expanded=True):
291
- st.write("### About the dataset")
292
- st.write("To make this demo as good as possible, our team spend a lot of time training a custom model. "
293
- "We used the LAION5B dataset to build our custom dataset, which contains 130k images of 15 types of rooms "
294
- "in almost 30 design styles. After fetching all these images, we started adding metadata such as "
295
- "captions (from the BLIP captioning model) and segmentation maps (from the HuggingFace UperNetForSemanticSegmentation model). "
296
- )
297
- st.write("For the gathering and inference of the metadata we used the Fondant framework (https://github.com/ml6team/fondant) provided by ML6 (https://www.ml6.eu/), which is an open source "
298
- "data centric framework for data preparation. The pipeline used for training this controlnet will soon be available as an "
299
- "example pipeline within Fondant and can be easily adapted for building your own dataset."
300
- )
301
- st.write("### About the model")
302
- st.write(
303
- "These were then used to train the controlnet model to generate quality interior design images by using "
304
- "the segmentation maps and prompts as conditioning information for the model. "
305
- "By training on segmentation maps, the enduser has a very finegrained control over which objects they "
306
- "want to place in their room. "
307
- "The resulting model is then used in a community pipeline that supports image2image and inpainting, "
308
- "so the user can keep elements of their room and change specific parts of the image."
309
- ""
310
- )
311
-
312
- st.write("### Trivia")
313
- st.write("The first time someone uses the demo after startup, the models still need to be loaded into memory. "
314
- "After this initial load, the model is cached as a resource and can be used for all the users. "
315
- "To avoid simultaneous requests, we have implemented a queueing mechanism that ensures that only one "
316
- "user accesses the model at a time (similar to the Gradio framework).\n"
317
- )
318
- st.write("To enable the features in the demo, we calculate the underlying segmentation maps and categories that "
319
- "are present in the image. This allows us to hide some of the manual work for the user, and "
320
- "by doing this, the users don't need to make a segmentation map in an external tool. Everything needed can be done within this demo."
321
- )
322
-
323
- # st.write("### News: Fondant - an open source data-centric framework for Foundation model finetuning")
324
- # st.write("The ML6 team is proud to announce that we are open sourcing our Fondant framework, which is a "
325
- # "data-centric framework that allows you to prepare large scale multimodal datasets with ease. We have implemented the components "
326
- # "that we used to train this controlnet model in Fondant as an example pipeline, and we are excited to see what you can do with it! In the future we will add a whole library of plug-and-play data preparation components, such as different ML models and filtering steps, in addition to dataset scraping components that connect to LAION5B."
327
- # )
328
- # st.write("The framework is built on top of kubeflow pipelines and abstracts all the complexity of efficient storing and moving of large datasets, so you can focus on implemented just that piece of code that you need without worrying about the rest. We also build it to run on each Cloud provider or VM. You can find the code on our github page: https://github.com/ml6team/fondant.")
329
-
330
- st.write("### Testing images")
331
- st.write("If you don't have any pictures close, you can use one of these images to test the model by clicking on the 'use example X' buttons")
332
-
333
- st.session_state['example_image_0'] = Image.open("content/example_0.png")
334
- st.session_state['example_image_1'] = Image.open("content/example_1.jpg")
335
- st.session_state['example_image_2'] = Image.open("content/example_2.jpg")
336
- st.session_state['example_image_3'] = Image.open("content/example_3.jpg")
337
-
338
- col_im_0, col_im_1 = st.columns(2)
339
-
340
- with col_im_0:
341
- st.image(st.session_state['example_image_0'], caption="Example image 1", use_column_width=True)
342
- if st.button("Use example 1"):
343
- move_image('example_image_0', 'initial_image', remove_state=True, rerun=True)
344
-
345
- st.image(st.session_state['example_image_2'], caption="Example image 3", use_column_width=True)
346
- if st.button("Use example 3"):
347
- move_image('example_image_2', 'initial_image', remove_state=True, rerun=True)
348
- with col_im_1:
349
- st.image(st.session_state['example_image_1'], caption="Example image 2", use_column_width=True)
350
- if st.button("Use example 2"):
351
- move_image('example_image_1', 'initial_image', remove_state=True, rerun=True)
352
-
353
- st.image(st.session_state['example_image_3'], caption="Example image 4", use_column_width=True)
354
- if st.button("Use example 4"):
355
- move_image('example_image_3', 'initial_image', remove_state=True, rerun=True)
356
-
357
- st.write("## Generated examples")
358
- make_image_row(Image.open("content/output_1.png"), Image.open("content/regen_example.png"))
359
- make_image_row(Image.open("content/keep background 2.png"), Image.open("content/output_0.png"))
360
- make_image_row(Image.open("content/segmentation window.png"), Image.open("content/output_3.png"))
361
-
362
- st.write("## Example video")
363
- st.write("### Video 1")
364
- st.video(open('content/controlnet_sprint_demo.mp4', 'rb').read())
365
- st.write("### Video 2")
366
- st.video(open('content/controlnet_demo_video_2.mp4', 'rb').read())
367
-
368
- else:
369
- make_prompt_row()
370
 
371
- _reset_state = check_reset_state()
 
 
 
 
 
 
372
 
373
- if generation_mode == "Inpainting":
374
- make_inpainting_explanation()
375
- elif generation_mode == "Segmentation":
376
- make_segmentation_explanation()
377
- elif generation_mode == "Regenerate":
378
- make_regeneration_explanation()
379
 
 
380
  col1, col2 = st.columns(2)
381
  with col1:
382
- make_editing_canvas(canvas_color=color_chooser,
383
- brush=brush,
384
- _reset_state=_reset_state,
385
- generation_mode=generation_mode,
386
- paint_mode=paint_mode
387
- )
 
388
 
389
  with col2:
390
  make_output_image()
391
 
 
392
  if __name__ == "__main__":
393
  main()
394
-
395
-
 
9
 
10
  from models import make_image_controlnet, make_inpainting
11
  from segmentation import segment_image
12
+ from config import (
13
+ HEIGHT,
14
+ WIDTH,
15
+ POS_PROMPT,
16
+ NEG_PROMPT,
17
+ COLOR_MAPPING,
18
+ map_colors,
19
+ map_colors_rgb,
20
+ )
21
  from palette import COLOR_MAPPING_CATEGORY
22
  from preprocessing import preprocess_seg_mask, get_image, get_mask
23
+ from explanation import (
24
+ make_inpainting_explanation,
25
+ make_regeneration_explanation,
26
+ make_segmentation_explanation,
27
+ )
28
+ from colors import INTERIOR
29
+
30
  # wide layout
31
  st.set_page_config(layout="wide")
32
 
33
 
34
  def on_upload() -> None:
35
  """Upload image to the canvas."""
36
+ if (
37
+ "input_image" in st.session_state
38
+ and st.session_state["input_image"] is not None
39
+ ):
40
+ image = Image.open(st.session_state["input_image"]).convert("RGB")
41
+ st.session_state["initial_image"] = image
42
+ if "seg" in st.session_state:
43
+ del st.session_state["seg"]
44
+ if "unique_colors" in st.session_state:
45
+ del st.session_state["unique_colors"]
46
+ if "output_image" in st.session_state:
47
+ del st.session_state["output_image"]
48
+
49
 
50
  def make_image_row(image_0, image_1):
51
  col_0, col_1 = st.columns(2)
 
60
  Returns:
61
  bool: True if the UI elements need to be reset, False otherwise
62
  """
63
+ if "reset_canvas" in st.session_state and st.session_state["reset_canvas"]:
64
+ st.session_state["reset_canvas"] = False
65
  return True
66
+ st.session_state["reset_canvas"] = False
67
  return False
68
 
69
 
70
+ def move_image(
71
+ source: Union[str, Image.Image],
72
+ dest: str,
73
+ rerun: bool = True,
74
+ remove_state: bool = True,
75
+ ) -> None:
76
  """Move image from source to destination.
77
  Args:
78
  source (Union[str, Image.Image]): source image
 
80
  rerun (bool, optional): rerun streamlit. Defaults to True.
81
  remove_state (bool, optional): remove the canvas state. Defaults to True.
82
  """
83
+ source_image = (
84
+ source if isinstance(source, Image.Image) else st.session_state[source]
85
+ )
86
 
87
  if remove_state:
88
+ st.session_state["reset_canvas"] = True
89
+ if "seg" in st.session_state:
90
+ del st.session_state["seg"]
91
+ if "unique_colors" in st.session_state:
92
+ del st.session_state["unique_colors"]
93
 
94
  st.session_state[dest] = source_image
95
+ st.session_state["dest"] = source_image
96
  if rerun:
97
  st.experimental_rerun()
98
 
99
 
100
  def on_change_radio() -> None:
101
  """Reset the UI elements when the radio button is changed."""
102
+ st.session_state["reset_canvas"] = True
103
 
104
 
105
  def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
 
107
  fill_color=canvas_color,
108
  stroke_color=canvas_color,
109
  background_color="#FFFFFF",
110
+ background_image=st.session_state["initial_image"]
111
+ if "initial_image" in st.session_state
112
+ else None,
113
  stroke_width=brush,
114
+ initial_drawing={"version": "4.4.0", "objects": []} if _reset_state else None,
115
  update_streamlit=True,
116
  height=512,
117
  width=512,
118
  drawing_mode=paint_mode,
119
  key="canvas",
120
  )
121
+ return canvas_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
 
 
 
 
123
 
124
+ def make_output_image():
125
+ st.write("#### After")
 
 
 
 
126
 
127
+ output_images = st.session_state["output_images"] if st.session_state["output_images"] else []
128
+ for output_image in output_images:
129
+ if isinstance(output_image, np.ndarray):
130
+ output_image = Image.fromarray(output_image)
131
 
132
+ if isinstance(output_image, Image.Image):
133
+ output_image = output_image.resize((512, 512))
134
 
135
+ if len(output_images) >= 1:
136
+ st.image(output_images[0], width=512)
137
+ else:
138
+ st.spinner()
 
139
 
140
+ if len(output_images) >= 2:
141
+ st.image(output_images[1], width=512)
142
  else:
143
+ st.spinner()
144
+
145
+ if len(output_images) >= 3:
146
+ st.image(output_images[2], width=512)
147
+ else:
148
+ st.spinner()
149
+
150
+ if len(output_images) >= 4:
151
+ st.image(output_images[3], width=512)
152
+ else:
153
+ st.spinner()
154
+
155
+ def generate():
156
+ image = get_image()
157
+
158
+ segmentation = st.session_state["seg"]
159
+ mask = np.zeros_like(segmentation)
160
+ interior = list(INTERIOR.values())
161
+ print(interior)
162
+ for color in st.session_state["unique_colors"]:
163
+ print(map_colors_rgb(color))
164
+ # 壁や床を変えると違う家になってしまう
165
+ if map_colors_rgb(color) in interior:
166
+ continue
167
+ # if the color is in the segmentation, set mask to 1
168
+ mask[np.where((segmentation == color).all(axis=2))] = 1
169
+
170
+ positive_prompt = "a photograph of a room, interior design, 4k, high resolution"
171
+ negative_prompt = "lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly"
172
+
173
+ with st.spinner(text="生成中…"):
174
+ st.session_state["output_images"] = []
175
+ result_image = make_image_controlnet(
176
+ image=image,
177
+ mask_image=mask,
178
+ controlnet_conditioning_image=segmentation,
179
+ positive_prompt=positive_prompt,
180
+ negative_prompt=negative_prompt,
181
+ seed=random.randint(0, 100000), # nosec
182
+ )
183
+ if isinstance(result_image, np.ndarray):
184
+ result_image = Image.fromarray(result_image)
185
+ st.session_state["output_images"].append(result_image)
186
+
187
+ result_image = make_image_controlnet(
188
+ image=image,
189
+ mask_image=mask,
190
+ controlnet_conditioning_image=segmentation,
191
+ positive_prompt=positive_prompt,
192
+ negative_prompt=negative_prompt,
193
+ seed=random.randint(0, 100000), # nosec
194
+ )
195
+ if isinstance(result_image, np.ndarray):
196
+ result_image = Image.fromarray(result_image)
197
+ st.session_state["output_images"].append(result_image)
198
+
199
+ result_image = make_image_controlnet(
200
+ image=image,
201
+ mask_image=mask,
202
+ controlnet_conditioning_image=segmentation,
203
+ positive_prompt=positive_prompt,
204
+ negative_prompt=negative_prompt,
205
+ seed=random.randint(0, 100000), # nosec
206
+ )
207
+ if isinstance(result_image, np.ndarray):
208
+ result_image = Image.fromarray(result_image)
209
+ st.session_state["output_images"].append(result_image)
210
+
211
+ result_image = make_image_controlnet(
212
+ image=image,
213
+ mask_image=mask,
214
+ controlnet_conditioning_image=segmentation,
215
+ positive_prompt=positive_prompt,
216
+ negative_prompt=negative_prompt,
217
+ seed=random.randint(0, 100000), # nosec
218
+ )
219
+ if isinstance(result_image, np.ndarray):
220
+ result_image = Image.fromarray(result_image)
221
+ st.session_state["output_images"].append(result_image)
222
 
 
 
 
 
223
 
224
  def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode):
225
+ st.write("#### Before")
226
  canvas_dict = make_canvas_dict(
227
  canvas_color=canvas_color,
228
  paint_mode=paint_mode,
229
  brush=brush,
230
+ _reset_state=_reset_state,
231
  )
 
 
 
 
232
 
233
+ canvas = st_canvas(
234
+ **canvas_dict,
235
+ )
236
+ if "seg" not in st.session_state:
237
+ with st.spinner(text="生成中…"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
  image = get_image()
239
+ real_seg = np.array(segment_image(Image.fromarray(image)))
240
+ st.session_state["seg"] = real_seg
241
+
242
+ if "unique_colors" not in st.session_state:
243
+ real_seg = st.session_state["seg"]
244
+ unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
245
+ unique_colors = [tuple(color) for color in unique_colors]
246
+ st.session_state["unique_colors"] = unique_colors
247
+
248
+ # chosen_colors = st.multiselect(
249
+ # label="Choose which concepts you want to regenerate in the image",
250
+ # options=st.session_state['unique_colors'],
251
+ # key='chosen_colors',
252
+ # default=st.session_state['unique_colors'],
253
+ # format_func=map_colors_rgb,
254
+ # )
255
+
256
+ if "output_images" not in st.session_state:
257
+ generate()
258
+ else:
259
+ if st.button("再生成"):
260
+ generate()
 
 
 
 
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
  def main():
264
  # center text
265
+ st.write("## Interior AI", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
+ input_image = st.file_uploader(
268
+ "部屋の画像を選択してください", type=["png", "jpg"], key="input_image", on_change=on_upload
269
+ )
270
+ generation_mode = "Regenerate"
271
+ color_chooser = "rgba(0, 0, 0, 0.0)"
272
+ paint_mode = "freedraw"
273
+ brush = 0
274
 
275
+ _reset_state = check_reset_state()
 
 
 
 
 
276
 
277
+ if input_image:
278
  col1, col2 = st.columns(2)
279
  with col1:
280
+ make_editing_canvas(
281
+ canvas_color=color_chooser,
282
+ brush=brush,
283
+ _reset_state=_reset_state,
284
+ generation_mode=generation_mode,
285
+ paint_mode=paint_mode,
286
+ )
287
 
288
  with col2:
289
  make_output_image()
290
 
291
+
292
  if __name__ == "__main__":
293
  main()