import gradio as gr import spaces import random import numpy as np from feifeilib.feifeimodload import feifeimodload from feifeilib.feifeiprompt import feifeiprompt from feifeilib.feifeisharpened import feifeisharpened pipe = feifeimodload() MAX_SEED = np.iinfo(np.int32).max @spaces.GPU() def feifeitexttoimg( prompt, quality_select=False, sharpened_select=False, styles_Radio=["(None)"], nsfw_select=False, nsfw_slider=0.45, seed=random.randint(0, MAX_SEED), randomize_seed=False, width=896, height=1152, num_inference_steps=4, guidance_scale=3.5, num_strength=0.35, progress=gr.Progress(track_tqdm=True), ): prompt, generator = feifeiprompt( randomize_seed, seed, prompt, quality_select, styles_Radio, ) #if nsfw_select: #pipe.set_adapters( # ["sldr_flux_nsfw_v2"], # adapter_weights=[nsfw_slider], #) #pipe.fuse_lora( # adapter_name=["sldr_flux_nsfw_v2"], # lora_scale=1.0, #) image = pipe( prompt="flux, 8k, ", prompt_2=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type="pil", ).images[0] if sharpened_select: image = feifeisharpened(image, num_strength) return image, prompt