Spaces:
Runtime error
Runtime error
File size: 2,111 Bytes
62872aa b916553 2aebf04 62872aa 13fe56e 62872aa 2530da6 da0c231 2530da6 da0c231 2530da6 1e1ae33 0ce143e 2530da6 bf1a463 2530da6 89e215b 4416bb5 2939714 da0c231 2939714 2530da6 d2159ad 2530da6 62872aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from PIL import Image
st.markdown("Link to the app - [milestone2-app](https://huggingface.co/spaces/aim9061/sentiment-analysis)")
st.title("Toxic Tweets Sentiment Analysis")
def create_dict(prob, text):
sorted_indices = np.argsort(prob)[-2:]
info = {"text": text,
"label1": toxic_tweet_cats[sorted_indices[1]],
"percentage1": str(round(prob[sorted_indices[1]], 3)),
"label2": toxic_tweet_cats[sorted_indices[0]],
"percentage2": str(round(prob[sorted_indices[0]], 3))}
return info
def get_cats(text):
tokenizer = AutoTokenizer.from_pretrained("aim9061/fine-tuned-toxic-tweet-dilbert")
token = tokenizer(text, return_tensors="pt")
model = AutoModelForSequenceClassification.from_pretrained("aim9061/fine-tuned-toxic-tweet-dilbert")
outputs = model(**token)
prob = torch.sigmoid(outputs.logits).detach().numpy()[0]
data = create_dict(prob, text)
res = pd.DataFrame(data)
st.table(res)
words = "Take that, you funking cat-dragon! You smell really bad!"
text = st.text_area("Insert text for analysis below.", words)
toxic_tweet_cats = ["Toxic", "Severe Toxic", "Obscene", "Threat", "Insult", "Identity Hate", "Not Toxic"]
model_list = ["aim9061/fine-tuned-toxic-tweet-dilbert", "distilbert-base-uncased-finetuned-sst-2-english", "bert-base-cased", "openai/clip-vit-base-patch32", "emilyalsentzer/Bio_ClinicalBERT",
"sentence-transformers/all-mpnet-base-v2", "facebook/bart-large-cnn", "openai/clip-vit-base-patch16", "speechbrain/spkrec-ecapa-voxceleb",
"albert-base-v2"]
model = st.selectbox("", model_list)
sub = st.write("Pick the model to use for analyzing the text!")
button = st.button("Analyze!")
pipe = pipeline("text-classification")
if(button):
if model == "aim9061/fine-tuned-toxic-tweet-dilbert":
get_cats(text)
pipe = pipeline("text-classification", model)
results = pipe(text)
st.write(results)
#TODO: DOCUMENT CODE
|