Spaces:
Runtime error
Runtime error
Alex
commited on
Commit
·
d311f5c
1
Parent(s):
5a9eb5a
added comments
Browse files- milestone3.ipynb +87 -101
milestone3.ipynb
CHANGED
|
@@ -1,18 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"nbformat": 4,
|
| 3 |
-
"nbformat_minor": 0,
|
| 4 |
-
"metadata": {
|
| 5 |
-
"colab": {
|
| 6 |
-
"provenance": []
|
| 7 |
-
},
|
| 8 |
-
"kernelspec": {
|
| 9 |
-
"name": "python3",
|
| 10 |
-
"display_name": "Python 3"
|
| 11 |
-
},
|
| 12 |
-
"language_info": {
|
| 13 |
-
"name": "python"
|
| 14 |
-
}
|
| 15 |
-
},
|
| 16 |
"cells": [
|
| 17 |
{
|
| 18 |
"cell_type": "code",
|
|
@@ -26,8 +12,8 @@
|
|
| 26 |
},
|
| 27 |
"outputs": [
|
| 28 |
{
|
| 29 |
-
"output_type": "stream",
|
| 30 |
"name": "stdout",
|
|
|
|
| 31 |
"text": [
|
| 32 |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
| 33 |
"Collecting datasets\n",
|
|
@@ -110,12 +96,13 @@
|
|
| 110 |
}
|
| 111 |
],
|
| 112 |
"source": [
|
|
|
|
| 113 |
"!pip install datasets\n",
|
| 114 |
"!pip install transformers\n",
|
| 115 |
"import pandas as pd\n",
|
| 116 |
"from sklearn.model_selection import train_test_split\n",
|
| 117 |
"import numpy as np\n",
|
| 118 |
-
"import transformers\n",
|
| 119 |
"import torch\n",
|
| 120 |
"import csv\n",
|
| 121 |
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
|
|
@@ -124,17 +111,7 @@
|
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"cell_type": "code",
|
| 127 |
-
"
|
| 128 |
-
"filename = \"/content/sample_data/train.csv\"\n",
|
| 129 |
-
"df = pd.read_csv(filename)\n",
|
| 130 |
-
"df.head()\n",
|
| 131 |
-
"df.drop(['id'], inplace=True, axis=1)\n",
|
| 132 |
-
"newdf = pd.DataFrame()\n",
|
| 133 |
-
"newdf['text'] = df['comment_text']\n",
|
| 134 |
-
"newdf['labels'] = df.iloc[:, 1:].values.tolist()\n",
|
| 135 |
-
"\n",
|
| 136 |
-
"newdf.head()"
|
| 137 |
-
],
|
| 138 |
"metadata": {
|
| 139 |
"colab": {
|
| 140 |
"base_uri": "https://localhost:8080/",
|
|
@@ -143,12 +120,11 @@
|
|
| 143 |
"id": "XQEDvn-7ksXU",
|
| 144 |
"outputId": "960bd74f-2533-4eab-9800-643823e14f2f"
|
| 145 |
},
|
| 146 |
-
"execution_count": null,
|
| 147 |
"outputs": [
|
| 148 |
{
|
| 149 |
-
"output_type": "error",
|
| 150 |
"ename": "FileNotFoundError",
|
| 151 |
"evalue": "ignored",
|
|
|
|
| 152 |
"traceback": [
|
| 153 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 154 |
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
|
@@ -163,32 +139,22 @@
|
|
| 163 |
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/sample_data/train.csv'"
|
| 164 |
]
|
| 165 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
]
|
| 167 |
},
|
| 168 |
{
|
| 169 |
"cell_type": "code",
|
| 170 |
-
"
|
| 171 |
-
"epoch = 1\n",
|
| 172 |
-
"max_len = 128\n",
|
| 173 |
-
"batch_size = 5\n",
|
| 174 |
-
"\n",
|
| 175 |
-
"train_df, val_df = train_test_split(newdf, test_size=0.2, random_state=42)\n",
|
| 176 |
-
"\"\"\"\n",
|
| 177 |
-
"DistilBertTokenizer\n",
|
| 178 |
-
"torch.utils.data.Dataset\n",
|
| 179 |
-
"inputs = self.tokenizer.encode_plus\n",
|
| 180 |
-
"DataLoader\n",
|
| 181 |
-
"PreTrainedModel\n",
|
| 182 |
-
"DistilBertForSequenceClassification\n",
|
| 183 |
-
"DistilBertConfig\n",
|
| 184 |
-
"model = DistilBertClassifier2(config)\n",
|
| 185 |
-
"model.to(device)\n",
|
| 186 |
-
"torch.optim.Adam\n",
|
| 187 |
-
"tokenizer.encode_plus\n",
|
| 188 |
-
"tokenizer.save_pretrained(\"model\")\n",
|
| 189 |
-
"model.save_pretrained(\"model\")\n",
|
| 190 |
-
"\"\"\""
|
| 191 |
-
],
|
| 192 |
"metadata": {
|
| 193 |
"colab": {
|
| 194 |
"base_uri": "https://localhost:8080/",
|
|
@@ -197,12 +163,11 @@
|
|
| 197 |
"id": "DO8fKxgnwIPz",
|
| 198 |
"outputId": "d0f73814-62a0-4d74-9353-3d4ce90b6d1b"
|
| 199 |
},
|
| 200 |
-
"execution_count": null,
|
| 201 |
"outputs": [
|
| 202 |
{
|
| 203 |
-
"output_type": "error",
|
| 204 |
"ename": "NameError",
|
| 205 |
"evalue": "ignored",
|
|
|
|
| 206 |
"traceback": [
|
| 207 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 208 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
@@ -210,17 +175,29 @@
|
|
| 210 |
"\u001b[0;31mNameError\u001b[0m: name 'newdf' is not defined"
|
| 211 |
]
|
| 212 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
]
|
| 214 |
},
|
| 215 |
{
|
| 216 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
"source": [
|
| 218 |
-
"class DS(Dataset)
|
| 219 |
" def __init__(self, dataframe, max_len):\n",
|
| 220 |
-
" self.data = dataframe\n",
|
| 221 |
" self.max_len = max_len\n",
|
| 222 |
-
" self.text = dataframe.text
|
| 223 |
-
" self.targets = self.data.labels\n",
|
| 224 |
" self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n",
|
| 225 |
" \n",
|
| 226 |
" def __len__(self):\n",
|
|
@@ -230,7 +207,7 @@
|
|
| 230 |
" text = str(self.text.iloc[index])\n",
|
| 231 |
" text = \" \".join(text.split())\n",
|
| 232 |
"\n",
|
| 233 |
-
" inputs = self.tokenizer.encode_plus(\n",
|
| 234 |
" text, None,\n",
|
| 235 |
" add_special_tokens=True,\n",
|
| 236 |
" max_length=self.max_len,\n",
|
|
@@ -239,41 +216,30 @@
|
|
| 239 |
" ids = inputs['input_ids']\n",
|
| 240 |
" mask = inputs['attention_mask']\n",
|
| 241 |
" token_type_ids = inputs[\"token_type_ids\"]\n",
|
| 242 |
-
" return {\n",
|
| 243 |
" 'ids': torch.tensor(ids, dtype=torch.long),\n",
|
| 244 |
" 'attention_mask': torch.tensor(mask, dtype=torch.long),\n",
|
| 245 |
" 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),\n",
|
| 246 |
" 'labels': torch.tensor(self.targets.iloc[index], dtype=torch.float)\n",
|
| 247 |
" }\n"
|
| 248 |
-
]
|
| 249 |
-
"metadata": {
|
| 250 |
-
"id": "i80qLafpzWDh"
|
| 251 |
-
},
|
| 252 |
-
"execution_count": null,
|
| 253 |
-
"outputs": []
|
| 254 |
},
|
| 255 |
{
|
| 256 |
"cell_type": "code",
|
| 257 |
-
"
|
| 258 |
-
"traindata = DS(train_df, max_len)\n",
|
| 259 |
-
"validdata = DS(val_df, max_len)\n",
|
| 260 |
-
"train_loader = DataLoader(traindata, batch_size=batch_size, shuffle=True)\n",
|
| 261 |
-
"tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n"
|
| 262 |
-
],
|
| 263 |
"metadata": {
|
| 264 |
-
"id": "EMScGH58Poaw",
|
| 265 |
"colab": {
|
| 266 |
"base_uri": "https://localhost:8080/",
|
| 267 |
"height": 201
|
| 268 |
},
|
|
|
|
| 269 |
"outputId": "de081257-fb6c-4c73-c54d-e88dd1e2603f"
|
| 270 |
},
|
| 271 |
-
"execution_count": null,
|
| 272 |
"outputs": [
|
| 273 |
{
|
| 274 |
-
"output_type": "error",
|
| 275 |
"ename": "NameError",
|
| 276 |
"evalue": "ignored",
|
|
|
|
| 277 |
"traceback": [
|
| 278 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 279 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
@@ -281,33 +247,30 @@
|
|
| 281 |
"\u001b[0;31mNameError\u001b[0m: name 'train_df' is not defined"
|
| 282 |
]
|
| 283 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
]
|
| 285 |
},
|
| 286 |
{
|
| 287 |
"cell_type": "code",
|
|
|
|
| 288 |
"metadata": {
|
| 289 |
-
"id": "fb9-Yr9YDZqo",
|
| 290 |
"colab": {
|
| 291 |
"base_uri": "https://localhost:8080/",
|
| 292 |
"height": 235
|
| 293 |
},
|
|
|
|
| 294 |
"outputId": "0664e5d0-55cb-4b58-e75a-b9acdab82e73"
|
| 295 |
},
|
| 296 |
-
"source": [
|
| 297 |
-
"device = torch.device('cuda')\n",
|
| 298 |
-
"\n",
|
| 299 |
-
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=6, problem_type=\"multi_label_classification\")\n",
|
| 300 |
-
"model.to(device)\n",
|
| 301 |
-
"model.train()\n",
|
| 302 |
-
"\n",
|
| 303 |
-
"optimizer = AdamW(model.parameters(), lr=5e-5)\n"
|
| 304 |
-
],
|
| 305 |
-
"execution_count": null,
|
| 306 |
"outputs": [
|
| 307 |
{
|
| 308 |
-
"output_type": "error",
|
| 309 |
"ename": "NameError",
|
| 310 |
"evalue": "ignored",
|
|
|
|
| 311 |
"traceback": [
|
| 312 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 313 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
@@ -315,10 +278,24 @@
|
|
| 315 |
"\u001b[0;31mNameError\u001b[0m: name 'torch' is not defined"
|
| 316 |
]
|
| 317 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
]
|
| 319 |
},
|
| 320 |
{
|
| 321 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
"source": [
|
| 323 |
"for i in range(epoch):\n",
|
| 324 |
" for batch in train_loader:\n",
|
|
@@ -333,15 +310,15 @@
|
|
| 333 |
" loss.backward()\n",
|
| 334 |
" optimizer.step()\n",
|
| 335 |
"model.eval()\n"
|
| 336 |
-
]
|
| 337 |
-
"metadata": {
|
| 338 |
-
"id": "mtMhE5_z8kw8"
|
| 339 |
-
},
|
| 340 |
-
"execution_count": null,
|
| 341 |
-
"outputs": []
|
| 342 |
},
|
| 343 |
{
|
| 344 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
"source": [
|
| 346 |
"xtrain = [\"FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!\"]\n",
|
| 347 |
"batch = tokenizer(xtrain, truncation=True, padding='max_length', return_tensors=\"pt\").to(device)\n",
|
|
@@ -351,14 +328,23 @@
|
|
| 351 |
" results = torch.sigmoid(outputs.logits)*100\n",
|
| 352 |
" print(results)\n",
|
| 353 |
"\n",
|
| 354 |
-
"model.save_pretrained(\"pretrained_model\")\n",
|
| 355 |
"tokenizer.save_pretrained(\"model_tokenizer\")"
|
| 356 |
-
]
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
}
|
| 363 |
-
|
| 364 |
-
|
|
|
|
|
|
|
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
|
|
|
| 12 |
},
|
| 13 |
"outputs": [
|
| 14 |
{
|
|
|
|
| 15 |
"name": "stdout",
|
| 16 |
+
"output_type": "stream",
|
| 17 |
"text": [
|
| 18 |
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
| 19 |
"Collecting datasets\n",
|
|
|
|
| 96 |
}
|
| 97 |
],
|
| 98 |
"source": [
|
| 99 |
+
"#list of import statements\n",
|
| 100 |
"!pip install datasets\n",
|
| 101 |
"!pip install transformers\n",
|
| 102 |
"import pandas as pd\n",
|
| 103 |
"from sklearn.model_selection import train_test_split\n",
|
| 104 |
"import numpy as np\n",
|
| 105 |
+
"import transformers \n",
|
| 106 |
"import torch\n",
|
| 107 |
"import csv\n",
|
| 108 |
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
|
|
|
|
| 111 |
},
|
| 112 |
{
|
| 113 |
"cell_type": "code",
|
| 114 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
"metadata": {
|
| 116 |
"colab": {
|
| 117 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 120 |
"id": "XQEDvn-7ksXU",
|
| 121 |
"outputId": "960bd74f-2533-4eab-9800-643823e14f2f"
|
| 122 |
},
|
|
|
|
| 123 |
"outputs": [
|
| 124 |
{
|
|
|
|
| 125 |
"ename": "FileNotFoundError",
|
| 126 |
"evalue": "ignored",
|
| 127 |
+
"output_type": "error",
|
| 128 |
"traceback": [
|
| 129 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 130 |
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
|
|
|
| 139 |
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/sample_data/train.csv'"
|
| 140 |
]
|
| 141 |
}
|
| 142 |
+
],
|
| 143 |
+
"source": [
|
| 144 |
+
"filename = \"/content/sample_data/train.csv\" #takes in the file for training and inputs into a pandas DataFrame\n",
|
| 145 |
+
"df = pd.read_csv(filename)\n",
|
| 146 |
+
"df.head()\n",
|
| 147 |
+
"df.drop(['id'], inplace=True, axis=1)\n",
|
| 148 |
+
"newdf = pd.DataFrame()\n",
|
| 149 |
+
"newdf['text'] = df['comment_text']\n",
|
| 150 |
+
"newdf['labels'] = df.iloc[:, 1:].values.tolist()\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"newdf.head()"
|
| 153 |
]
|
| 154 |
},
|
| 155 |
{
|
| 156 |
"cell_type": "code",
|
| 157 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
"metadata": {
|
| 159 |
"colab": {
|
| 160 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 163 |
"id": "DO8fKxgnwIPz",
|
| 164 |
"outputId": "d0f73814-62a0-4d74-9353-3d4ce90b6d1b"
|
| 165 |
},
|
|
|
|
| 166 |
"outputs": [
|
| 167 |
{
|
|
|
|
| 168 |
"ename": "NameError",
|
| 169 |
"evalue": "ignored",
|
| 170 |
+
"output_type": "error",
|
| 171 |
"traceback": [
|
| 172 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 173 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
|
| 175 |
"\u001b[0;31mNameError\u001b[0m: name 'newdf' is not defined"
|
| 176 |
]
|
| 177 |
}
|
| 178 |
+
],
|
| 179 |
+
"source": [
|
| 180 |
+
"epoch = 1\n",
|
| 181 |
+
"max_len = 128\n",
|
| 182 |
+
"batch_size = 5\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"train_df, val_df = train_test_split(newdf, test_size=0.2, random_state=42) #splits the dataframe into training data and valid data\n"
|
| 185 |
]
|
| 186 |
},
|
| 187 |
{
|
| 188 |
"cell_type": "code",
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"metadata": {
|
| 191 |
+
"id": "i80qLafpzWDh"
|
| 192 |
+
},
|
| 193 |
+
"outputs": [],
|
| 194 |
"source": [
|
| 195 |
+
"class DS(Dataset): #this creates the dataset class\n",
|
| 196 |
" def __init__(self, dataframe, max_len):\n",
|
| 197 |
+
" self.data = dataframe #takes in the dataframe from earlier\n",
|
| 198 |
" self.max_len = max_len\n",
|
| 199 |
+
" self.text = dataframe.text #\n",
|
| 200 |
+
" self.targets = self.data.labels \n",
|
| 201 |
" self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n",
|
| 202 |
" \n",
|
| 203 |
" def __len__(self):\n",
|
|
|
|
| 207 |
" text = str(self.text.iloc[index])\n",
|
| 208 |
" text = \" \".join(text.split())\n",
|
| 209 |
"\n",
|
| 210 |
+
" inputs = self.tokenizer.encode_plus( #this is for the tokens\n",
|
| 211 |
" text, None,\n",
|
| 212 |
" add_special_tokens=True,\n",
|
| 213 |
" max_length=self.max_len,\n",
|
|
|
|
| 216 |
" ids = inputs['input_ids']\n",
|
| 217 |
" mask = inputs['attention_mask']\n",
|
| 218 |
" token_type_ids = inputs[\"token_type_ids\"]\n",
|
| 219 |
+
" return { #this is the output for the class (this outputs tensors as it is a more usable form)\n",
|
| 220 |
" 'ids': torch.tensor(ids, dtype=torch.long),\n",
|
| 221 |
" 'attention_mask': torch.tensor(mask, dtype=torch.long),\n",
|
| 222 |
" 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),\n",
|
| 223 |
" 'labels': torch.tensor(self.targets.iloc[index], dtype=torch.float)\n",
|
| 224 |
" }\n"
|
| 225 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
},
|
| 227 |
{
|
| 228 |
"cell_type": "code",
|
| 229 |
+
"execution_count": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
"metadata": {
|
|
|
|
| 231 |
"colab": {
|
| 232 |
"base_uri": "https://localhost:8080/",
|
| 233 |
"height": 201
|
| 234 |
},
|
| 235 |
+
"id": "EMScGH58Poaw",
|
| 236 |
"outputId": "de081257-fb6c-4c73-c54d-e88dd1e2603f"
|
| 237 |
},
|
|
|
|
| 238 |
"outputs": [
|
| 239 |
{
|
|
|
|
| 240 |
"ename": "NameError",
|
| 241 |
"evalue": "ignored",
|
| 242 |
+
"output_type": "error",
|
| 243 |
"traceback": [
|
| 244 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 245 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
|
| 247 |
"\u001b[0;31mNameError\u001b[0m: name 'train_df' is not defined"
|
| 248 |
]
|
| 249 |
}
|
| 250 |
+
],
|
| 251 |
+
"source": [
|
| 252 |
+
"traindata = DS(train_df, max_len) #creates training dataset\n",
|
| 253 |
+
"validdata = DS(val_df, max_len) #creates valid dataset\n",
|
| 254 |
+
"train_loader = DataLoader(traindata, batch_size=batch_size, shuffle=True) #loads the dataset into dataloader\n",
|
| 255 |
+
"tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n"
|
| 256 |
]
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"cell_type": "code",
|
| 260 |
+
"execution_count": null,
|
| 261 |
"metadata": {
|
|
|
|
| 262 |
"colab": {
|
| 263 |
"base_uri": "https://localhost:8080/",
|
| 264 |
"height": 235
|
| 265 |
},
|
| 266 |
+
"id": "fb9-Yr9YDZqo",
|
| 267 |
"outputId": "0664e5d0-55cb-4b58-e75a-b9acdab82e73"
|
| 268 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"outputs": [
|
| 270 |
{
|
|
|
|
| 271 |
"ename": "NameError",
|
| 272 |
"evalue": "ignored",
|
| 273 |
+
"output_type": "error",
|
| 274 |
"traceback": [
|
| 275 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 276 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
|
| 278 |
"\u001b[0;31mNameError\u001b[0m: name 'torch' is not defined"
|
| 279 |
]
|
| 280 |
}
|
| 281 |
+
],
|
| 282 |
+
"source": [
|
| 283 |
+
"device = torch.device('cuda')\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=6, problem_type=\"multi_label_classification\")\n",
|
| 286 |
+
"model.to(device)\n",
|
| 287 |
+
"model.train() #trains the data\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"optimizer = AdamW(model.parameters(), lr=5e-5)\n"
|
| 290 |
]
|
| 291 |
},
|
| 292 |
{
|
| 293 |
"cell_type": "code",
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"metadata": {
|
| 296 |
+
"id": "mtMhE5_z8kw8"
|
| 297 |
+
},
|
| 298 |
+
"outputs": [],
|
| 299 |
"source": [
|
| 300 |
"for i in range(epoch):\n",
|
| 301 |
" for batch in train_loader:\n",
|
|
|
|
| 310 |
" loss.backward()\n",
|
| 311 |
" optimizer.step()\n",
|
| 312 |
"model.eval()\n"
|
| 313 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
},
|
| 315 |
{
|
| 316 |
"cell_type": "code",
|
| 317 |
+
"execution_count": null,
|
| 318 |
+
"metadata": {
|
| 319 |
+
"id": "8T4UG8K8BvUn"
|
| 320 |
+
},
|
| 321 |
+
"outputs": [],
|
| 322 |
"source": [
|
| 323 |
"xtrain = [\"FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!\"]\n",
|
| 324 |
"batch = tokenizer(xtrain, truncation=True, padding='max_length', return_tensors=\"pt\").to(device)\n",
|
|
|
|
| 328 |
" results = torch.sigmoid(outputs.logits)*100\n",
|
| 329 |
" print(results)\n",
|
| 330 |
"\n",
|
| 331 |
+
"model.save_pretrained(\"pretrained_model\") #saves the trained model\n",
|
| 332 |
"tokenizer.save_pretrained(\"model_tokenizer\")"
|
| 333 |
+
]
|
| 334 |
+
}
|
| 335 |
+
],
|
| 336 |
+
"metadata": {
|
| 337 |
+
"colab": {
|
| 338 |
+
"provenance": []
|
| 339 |
+
},
|
| 340 |
+
"kernelspec": {
|
| 341 |
+
"display_name": "Python 3",
|
| 342 |
+
"name": "python3"
|
| 343 |
+
},
|
| 344 |
+
"language_info": {
|
| 345 |
+
"name": "python"
|
| 346 |
}
|
| 347 |
+
},
|
| 348 |
+
"nbformat": 4,
|
| 349 |
+
"nbformat_minor": 0
|
| 350 |
+
}
|