import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch import torchaudio import spaces import re # Initialize devices device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and processor processor = WhisperProcessor.from_pretrained("aiola/whisper-ner-v1") model = WhisperForConditionalGeneration.from_pretrained("aiola/whisper-ner-v1") model = model.to(device) examples = [ [ "audio/sports.wav", "football-club, football-player, action" ], [ "audio/entertainment.wav", "movie, date, actor, tv-show, musician" ], [ "audio/672-122797-0026.wav", "biological-classification, desire, demographic-group, object-category, relationship-role, reflexive-pronoun, furniture-type" ], [ "audio/7021-85628-0025.wav", "action-goal, person's-title, emotional-connection, personal-qualities, pronoun-target, assignmentaction, physical-action, family-role" ], [ "audio/672-122797-0024.wav", "health-warning, importance-indicator, event, sentiment" ], [ "audio/672-122797-0027.wav", "action, emotional-resilience, comparative-path-characteristic, social-role" ], [ "audio/672-122797-0048.wav", "weapon, emotional-state, household-chore, atmosphere-quality" ], ] def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")): """Process and standardize entity text by replacing certain symbols and normalizing spaces.""" text = " ".join(text.split()) for symbol in symbols_to_replace: text = text.replace(symbol, "-") return text.lower() def extract_entities_and_clean_text_fixed(text): entity_pattern = r"<(.*?)>(.*?)<\1>>" entities = [] clean_text = [] current_pos = 0 # Iterate through the matches for entity tags for match in re.finditer(entity_pattern, text): # Add text before the entity to the clean text clean_text.append(text[current_pos:match.start()]) entity_type = match.group(1) entity_text = match.group(2) start_pos = len("".join(clean_text)) # Start position in the clean text end_pos = start_pos + len(entity_text) # Append the entity text to the clean text clean_text.append(entity_text) # Add the entity details to the list entities.append({ "entity": entity_type, "text": entity_text, "start": start_pos, "end": end_pos }) # Update the current position to the end of the match current_pos = match.end() # Append the remaining part of the text after the last entity clean_text.append(text[current_pos:]) # Join all parts of the clean text clean_text_str = "".join(clean_text) return clean_text_str, entities @spaces.GPU # This decorator ensures your function can use GPU on Hugging Face Spaces def transcribe_and_recognize_entities(audio_file, prompt): target_sample_rate = 16000 signal, sampling_rate = torchaudio.load(audio_file) resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=target_sample_rate) signal = resampler(signal) if signal.ndim == 2: signal = torch.mean(signal, dim=0) input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features input_features = input_features.to(device) ner_types = prompt.split(',') processed_ner_types = [unify_ner_text(ner_type.strip()) for ner_type in ner_types] prompt = ", ".join(processed_ner_types) print(f"Prompt after unify_ner_text: {prompt}") prompt_ids = processor.get_prompt_ids(prompt, return_tensors="pt") prompt_ids = prompt_ids.to(device) predicted_ids = model.generate( input_features, max_new_tokens=256, prompt_ids=prompt_ids, language='en', generation_config=model.generation_config, ) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] clean_text_fixed, extracted_entities_fixed = extract_entities_and_clean_text_fixed(transcription) return transcription, {"text": clean_text_fixed, "entities": extracted_entities_fixed} with gr.Blocks(title="WhisperNER v1") as demo: gr.Markdown( """ # Whisper-NER: ASR with zero-shot NER WhisperNER is a unified model for automatic speech recognition (ASR) and named entity recognition (NER), with zero-shot capabilities. The WhisperNER model is designed as a strong base model for the downstream task of ASR with NER, and can be fine-tuned on specific datasets for improved performance. ## Links * Paper: [WhisperNER: Unified Open Named Entity and Speech Recognition](https://arxiv.org/abs/2409.08107). * Model: https://huggingface.co/aiola/whisper-ner-v1 * Code: https://github.com/aiola-lab/whisper-ner """ ) with gr.Row() as row1: with gr.Column() as col1: audio_input = gr.Audio(label="Audio Example", type="filepath") with gr.Column() as col2: label_input = gr.Textbox(label="Entity Labels") submit_btn = gr.Button("Submit") gr.Markdown("## Output") with gr.Row() as row3: transcript_output = gr.Textbox(label="Transcription and Entities") with gr.Row() as row4: highlighted_text_output = gr.HighlightedText(label="Predicted Highlighted Entities") examples = gr.Examples( examples, fn=transcribe_and_recognize_entities, inputs=[audio_input, label_input], outputs=[transcript_output, highlighted_text_output], cache_examples=True, run_on_click=True, ) # Submitting label_input.submit( fn=transcribe_and_recognize_entities, inputs=[audio_input, label_input], outputs=[transcript_output, highlighted_text_output], ) submit_btn.click( fn=transcribe_and_recognize_entities, inputs=[audio_input, label_input], outputs=[transcript_output, highlighted_text_output], ) demo.launch()