emi-3 / app.py
alfredplpl's picture
Update app.py
8ccf6e8 verified
raw
history blame
5.95 kB
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
import spaces
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusion3Pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
device = "cuda"
dtype = torch.float16
repo = "aipicasso/emi-3"
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
device_map="cuda",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
token=os.environ["TOKEN"]
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"])
upsampler = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 226,
"return_full_text": False,
"temperature": 0.7,
"do_sample": True,
"top_p": 0.95
}
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1344
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
messages = [
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「クールなアニメ風の女の子」"},
{"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. "},
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「実写風の女子高生」"},
{"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. "},
{"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" },
]
output = upsampler(messages, **generation_args)
upsampled_prompt=output[0]['generated_text']
print(upsampled_prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = t2i(
prompt = upsampled_prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image, seed, upsampled_prompt
examples = [
"美味しい肉",
"馬に乗った宇宙飛行士",
"アニメ風の美少女",
"女子高生の写真",
"寿司でできた家に入っているコーギー",
"バナナとアボカドが戦っている様子"
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 日本語が入力できる SD3.5 Large
""")
with gr.Row():
prompt = gr.Text(
label="プロンプト",
show_label=False,
max_lines=1,
placeholder="作りたい画像の特徴を入力してください",
container=False,
)
run_button = gr.Button("実行", scale=0)
result = gr.Image(label="結果", show_label=False)
generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False)
with gr.Accordion("詳細設定", open=False):
negative_prompt = gr.Text(
label="ネガティブプロンプト",
max_lines=1,
placeholder="画像から排除したい要素を入力してください",
)
seed = gr.Slider(
label="乱数のシード",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="ランダム生成", value=True)
with gr.Row():
width = gr.Slider(
label="横",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="縦",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="プロンプトの忠実さ",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="推論回数",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed, generated_prompt]
)
demo.launch()