alfredplpl
commited on
Commit
•
04e62f7
1
Parent(s):
d4b205e
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Thanks: https://huggingface.co/spaces/stabilityai/stable-diffusion-3-medium
|
2 |
+
import spaces
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
from diffusers import StableDiffusion3Pipeline
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
10 |
+
|
11 |
+
device = "cuda"
|
12 |
+
dtype = torch.float16
|
13 |
+
|
14 |
+
repo = "stabilityai/stable-diffusion-3.5-large"
|
15 |
+
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device)
|
16 |
+
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
19 |
+
device_map="cuda",
|
20 |
+
torch_dtype=torch.bfloat16,
|
21 |
+
trust_remote_code=True,
|
22 |
+
token=os.environ["TOKEN"]
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"])
|
25 |
+
upsampler = pipeline(
|
26 |
+
"text-generation",
|
27 |
+
model=model,
|
28 |
+
tokenizer=tokenizer,
|
29 |
+
)
|
30 |
+
|
31 |
+
generation_args = {
|
32 |
+
"max_new_tokens": 226,
|
33 |
+
"return_full_text": False,
|
34 |
+
"temperature": 0.7,
|
35 |
+
"do_sample": True,
|
36 |
+
"top_p": 0.95
|
37 |
+
}
|
38 |
+
|
39 |
+
MAX_SEED = np.iinfo(np.int32).max
|
40 |
+
MAX_IMAGE_SIZE = 1344
|
41 |
+
|
42 |
+
@spaces.GPU
|
43 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
44 |
+
messages = [
|
45 |
+
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「クールなアニメ風の女の子」"},
|
46 |
+
{"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. "},
|
47 |
+
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「実写風の女子高生」"},
|
48 |
+
{"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. "},
|
49 |
+
{"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" },
|
50 |
+
]
|
51 |
+
output = upsampler(messages, **generation_args)
|
52 |
+
upsampled_prompt=output[0]['generated_text']
|
53 |
+
print(upsampled_prompt)
|
54 |
+
|
55 |
+
if randomize_seed:
|
56 |
+
seed = random.randint(0, MAX_SEED)
|
57 |
+
|
58 |
+
generator = torch.Generator().manual_seed(seed)
|
59 |
+
|
60 |
+
image = t2i(
|
61 |
+
prompt = upsampled_prompt,
|
62 |
+
negative_prompt = negative_prompt,
|
63 |
+
guidance_scale = guidance_scale,
|
64 |
+
num_inference_steps = num_inference_steps,
|
65 |
+
width = width,
|
66 |
+
height = height,
|
67 |
+
generator = generator
|
68 |
+
).images[0]
|
69 |
+
|
70 |
+
return image, seed, upsampled_prompt
|
71 |
+
|
72 |
+
examples = [
|
73 |
+
"美味しい肉",
|
74 |
+
"馬に乗った宇宙飛行士",
|
75 |
+
"アニメ風の美少女",
|
76 |
+
"女子高生の写真",
|
77 |
+
"寿司でできた家に入っているコーギー",
|
78 |
+
"バナナとアボカドが戦っている様子"
|
79 |
+
]
|
80 |
+
|
81 |
+
css="""
|
82 |
+
#col-container {
|
83 |
+
margin: 0 auto;
|
84 |
+
max-width: 580px;
|
85 |
+
}
|
86 |
+
"""
|
87 |
+
|
88 |
+
with gr.Blocks(css=css) as demo:
|
89 |
+
|
90 |
+
with gr.Column(elem_id="col-container"):
|
91 |
+
gr.Markdown(f"""
|
92 |
+
# 日本語が入力できる SD3.5 Large
|
93 |
+
""")
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
|
97 |
+
prompt = gr.Text(
|
98 |
+
label="プロンプト",
|
99 |
+
show_label=False,
|
100 |
+
max_lines=1,
|
101 |
+
placeholder="作りたい画像の特徴を入力してください",
|
102 |
+
container=False,
|
103 |
+
)
|
104 |
+
|
105 |
+
run_button = gr.Button("実行", scale=0)
|
106 |
+
|
107 |
+
result = gr.Image(label="結果", show_label=False)
|
108 |
+
generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False)
|
109 |
+
|
110 |
+
with gr.Accordion("詳細設定", open=False):
|
111 |
+
|
112 |
+
negative_prompt = gr.Text(
|
113 |
+
label="ネガティブプロンプト",
|
114 |
+
max_lines=1,
|
115 |
+
placeholder="画像から排除したい要素を入力してください",
|
116 |
+
)
|
117 |
+
|
118 |
+
seed = gr.Slider(
|
119 |
+
label="乱数のシード",
|
120 |
+
minimum=0,
|
121 |
+
maximum=MAX_SEED,
|
122 |
+
step=1,
|
123 |
+
value=0,
|
124 |
+
)
|
125 |
+
|
126 |
+
randomize_seed = gr.Checkbox(label="ランダム生成", value=True)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
|
130 |
+
width = gr.Slider(
|
131 |
+
label="横",
|
132 |
+
minimum=256,
|
133 |
+
maximum=MAX_IMAGE_SIZE,
|
134 |
+
step=64,
|
135 |
+
value=1024,
|
136 |
+
)
|
137 |
+
|
138 |
+
height = gr.Slider(
|
139 |
+
label="縦",
|
140 |
+
minimum=256,
|
141 |
+
maximum=MAX_IMAGE_SIZE,
|
142 |
+
step=64,
|
143 |
+
value=1024,
|
144 |
+
)
|
145 |
+
|
146 |
+
with gr.Row():
|
147 |
+
|
148 |
+
guidance_scale = gr.Slider(
|
149 |
+
label="プロンプトの忠実さ",
|
150 |
+
minimum=0.0,
|
151 |
+
maximum=10.0,
|
152 |
+
step=0.1,
|
153 |
+
value=3.5,
|
154 |
+
)
|
155 |
+
|
156 |
+
num_inference_steps = gr.Slider(
|
157 |
+
label="推論回数",
|
158 |
+
minimum=1,
|
159 |
+
maximum=50,
|
160 |
+
step=1,
|
161 |
+
value=28,
|
162 |
+
)
|
163 |
+
|
164 |
+
gr.Examples(
|
165 |
+
examples = examples,
|
166 |
+
inputs = [prompt]
|
167 |
+
)
|
168 |
+
gr.on(
|
169 |
+
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
170 |
+
fn = infer,
|
171 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
172 |
+
outputs = [result, seed, generated_prompt]
|
173 |
+
)
|
174 |
+
|
175 |
+
demo.launch()
|