KarthickAdopleAI commited on
Commit
e15d9f7
·
verified ·
1 Parent(s): 3a15564

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -26
app.py CHANGED
@@ -1,10 +1,12 @@
1
  from openai import AzureOpenAI
 
2
  import os
3
  import ffmpeg
4
  from typing import List
5
  from moviepy.editor import VideoFileClip
6
  import nltk
7
  from sklearn.feature_extraction.text import TfidfVectorizer
 
8
  import gradio as gr
9
  from pytube import YouTube
10
  import requests
@@ -14,6 +16,7 @@ nltk.download('punkt')
14
  nltk.download('stopwords')
15
 
16
 
 
17
  class VideoAnalytics:
18
  """
19
  Class for performing analytics on videos including transcription, summarization, topic generation,
@@ -30,6 +33,8 @@ class VideoAnalytics:
30
  # Initialize AzureOpenAI client
31
  self.client = AzureOpenAI()
32
 
 
 
33
  # Initialize transcribed text variable
34
  self.transcribed_text = ""
35
 
@@ -37,10 +42,18 @@ class VideoAnalytics:
37
  self.API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
38
 
39
  # Placeholder for Hugging Face API token
40
- hf_token = os.get_environ("HF_TOKEN") # Replace this with the actual Hugging Face API token
41
 
42
  # Set headers for API requests with Hugging Face token
43
- self.headers = {"Authorization": f"Bearer {hf_token}"}
 
 
 
 
 
 
 
 
44
 
45
  # Configure logging settings
46
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@@ -73,6 +86,8 @@ class VideoAnalytics:
73
  output = query(audio_file)
74
  # Update the transcribed_text attribute with the transcription result
75
  self.transcribed_text = output["text"]
 
 
76
  # Return the transcribed text
77
  return output["text"]
78
 
@@ -91,11 +106,11 @@ class VideoAnalytics:
91
  # Define a conversation between system and user
92
  conversation = [
93
  {"role": "system", "content": "You are a Summarizer"},
94
- {"role": "user", "content": f"""summarize the following text delimited by triple backticks.
95
  In two format of Outputs given below:
96
  Abstractive Summary:
97
  Extractive Summary:
98
- ```{self.transcribed_text}```
99
  """}
100
  ]
101
  # Generate completion using ChatGPT model
@@ -124,9 +139,38 @@ class VideoAnalytics:
124
  # Define a conversation between system and user
125
  conversation = [
126
  {"role": "system", "content": "You are a Topic Generator"},
127
- {"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.
128
  list out the topics:
129
  Topics:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  ```{self.transcribed_text}```
131
  """}
132
  ]
@@ -144,6 +188,103 @@ class VideoAnalytics:
144
  logging.error(f"Error generating topics: {e}")
145
  return ""
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  def extract_video_important_sentence(self) -> str:
148
  """
149
  Extract important sentences from the transcribed video.
@@ -152,8 +293,9 @@ class VideoAnalytics:
152
  str: Extracted important sentences.
153
  """
154
  try:
 
155
  # Tokenize the sentences
156
- sentences = nltk.sent_tokenize(self.transcribed_text)
157
 
158
  # Initialize TF-IDF vectorizer
159
  tfidf_vectorizer = TfidfVectorizer()
@@ -171,7 +313,7 @@ class VideoAnalytics:
171
  sentence_rankings.sort(reverse=True)
172
 
173
  # Set a threshold for selecting sentences
174
- threshold = 2 # Adjust as needed
175
 
176
  # Select sentences with scores above the threshold
177
  selected_sentences = [sentence for score, sentence in sentence_rankings if score >= threshold]
@@ -232,7 +374,6 @@ class VideoAnalytics:
232
  logging.error(f"Error downloading video: {e}")
233
  return ""
234
 
235
-
236
  def main(self, video: str = None, input_path: str = None) -> tuple:
237
  """
238
  Perform video analytics.
@@ -245,24 +386,31 @@ class VideoAnalytics:
245
  tuple: Summary, important sentences, and topics.
246
  """
247
  try:
248
- # Download the video if input_path is provided, otherwise use the provided video path
249
- if input_path:
250
- input_path = self.Download(input_path)
251
- text = self.transcribe_video(input_path)
252
- elif video:
253
- text = self.transcribe_video(video)
254
- input_path = video
255
-
256
- # Generate summary, important sentences, and topics
257
- summary = self.generate_video_summary()
258
- self.write_text_files(summary,"Summary")
259
- important_sentences = self.extract_video_important_sentence()
260
- self.write_text_files(important_sentences,"Important_Sentence")
261
- topics = self.generate_topics()
262
- self.write_text_files(topics,"Topics")
263
-
264
- # Return the generated summary, important sentences, and topics
265
- return summary,important_sentences,topics
 
 
 
 
 
 
 
266
 
267
  except Exception as e:
268
  # Log any errors that occur during video analytics
@@ -293,7 +441,16 @@ class VideoAnalytics:
293
  Topics = gr.Textbox(show_label=False,lines=10)
294
  with gr.Row():
295
  topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button")
 
 
 
 
 
 
 
 
296
  submit_btn.click(self.main,[video,yt_link],[summary,Important_Sentences,Topics])
 
297
  demo.launch()
298
 
299
  if __name__ == "__main__":
 
1
  from openai import AzureOpenAI
2
+ from langchain_openai import AzureChatOpenAI
3
  import os
4
  import ffmpeg
5
  from typing import List
6
  from moviepy.editor import VideoFileClip
7
  import nltk
8
  from sklearn.feature_extraction.text import TfidfVectorizer
9
+ from langchain import HuggingFaceHub, PromptTemplate, LLMChain
10
  import gradio as gr
11
  from pytube import YouTube
12
  import requests
 
16
  nltk.download('stopwords')
17
 
18
 
19
+
20
  class VideoAnalytics:
21
  """
22
  Class for performing analytics on videos including transcription, summarization, topic generation,
 
33
  # Initialize AzureOpenAI client
34
  self.client = AzureOpenAI()
35
 
36
+ self.mistral_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
37
+
38
  # Initialize transcribed text variable
39
  self.transcribed_text = ""
40
 
 
42
  self.API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
43
 
44
  # Placeholder for Hugging Face API token
45
+ self.hf_token = "HF_TOKEN" # Replace this with the actual Hugging Face API token
46
 
47
  # Set headers for API requests with Hugging Face token
48
+ self.headers = {"Authorization": f"Bearer {self.hf_token}"}
49
+
50
+ # Initialize english text variable
51
+ self.english_text = ""
52
+
53
+ self.openai_llm = AzureChatOpenAI(
54
+ deployment_name="ChatGPT",
55
+ )
56
+
57
 
58
  # Configure logging settings
59
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
 
86
  output = query(audio_file)
87
  # Update the transcribed_text attribute with the transcription result
88
  self.transcribed_text = output["text"]
89
+ # Update the translation text into english_text
90
+ self.english_text = self.translation()
91
  # Return the transcribed text
92
  return output["text"]
93
 
 
106
  # Define a conversation between system and user
107
  conversation = [
108
  {"role": "system", "content": "You are a Summarizer"},
109
+ {"role": "user", "content": f"""summarize the following text delimited by triple backticks.Output must in english.
110
  In two format of Outputs given below:
111
  Abstractive Summary:
112
  Extractive Summary:
113
+ ```{self.english_text}```
114
  """}
115
  ]
116
  # Generate completion using ChatGPT model
 
139
  # Define a conversation between system and user
140
  conversation = [
141
  {"role": "system", "content": "You are a Topic Generator"},
142
+ {"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.Output must in english.
143
  list out the topics:
144
  Topics:
145
+ ```{self.english_text}```
146
+ """}
147
+ ]
148
+ # Generate completion using ChatGPT model
149
+ response = self.client.chat.completions.create(
150
+ model="ChatGPT",
151
+ messages=conversation,
152
+ temperature=0,
153
+ max_tokens=1000
154
+ )
155
+ # Get the generated topics message
156
+ message = response.choices[0].message.content
157
+ return message
158
+ except Exception as e:
159
+ logging.error(f"Error generating topics: {e}")
160
+ return ""
161
+
162
+ def translation(self) -> str:
163
+ """
164
+ translation from the transcribed video.
165
+
166
+ Returns:
167
+ str: translation.
168
+ """
169
+ try:
170
+ # Define a conversation between system and user
171
+ conversation = [
172
+ {"role": "system", "content": "You are a Multilingual Translator"},
173
+ {"role": "user", "content": f""" Translate the following text in English ,delimited by triple backticks.
174
  ```{self.transcribed_text}```
175
  """}
176
  ]
 
188
  logging.error(f"Error generating topics: {e}")
189
  return ""
190
 
191
+ def format_prompt(self, question: str, data: str) -> str:
192
+ """
193
+ Formats the prompt for the language model.
194
+
195
+ Args:
196
+ question (str): The user's question.
197
+ data (str): The data to be analyzed.
198
+
199
+ Returns:
200
+ str: Formatted prompt.
201
+ """
202
+ prompt = "<s>"
203
+ prompt = f"""[INST] you are the german language and universal language expert .your task is analyze the given data and user ask any question about given data answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
204
+ data:{data}
205
+ question:{question}[/INST]"""
206
+
207
+ prompt1 = f"[INST] {question} [/INST]"
208
+ return prompt+prompt1
209
+
210
+
211
+ def generate(self, prompt: str, transcribed_text: str, temperature=0.9, max_new_tokens=5000, top_p=0.95,
212
+ repetition_penalty=1.0) -> str:
213
+ """
214
+ Generates text based on the prompt and transcribed text.
215
+
216
+ Args:
217
+ prompt (str): The prompt for generating text.
218
+ transcribed_text (str): The transcribed text for analysis.
219
+ temperature (float): Controls the randomness of the sampling. Default is 0.9.
220
+ max_new_tokens (int): Maximum number of tokens to generate. Default is 5000.
221
+ top_p (float): Nucleus sampling parameter. Default is 0.95.
222
+ repetition_penalty (float): Penalty for repeating the same token. Default is 1.0.
223
+
224
+ Returns:
225
+ str: Generated text.
226
+ """
227
+ try:
228
+ temperature = float(temperature)
229
+ if temperature < 1e-2:
230
+ temperature = 1e-2
231
+ top_p = float(top_p)
232
+
233
+ generate_kwargs = dict(
234
+ temperature=temperature,
235
+ max_new_tokens=max_new_tokens,
236
+ top_p=top_p,
237
+ repetition_penalty=repetition_penalty,
238
+ do_sample=True,
239
+ seed=42,
240
+ )
241
+
242
+ # Format the prompt
243
+ formatted_prompt = self.format_prompt(prompt,transcribed_text)
244
+
245
+ # Generate text using the mistral client
246
+ stream = self.mistral_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
247
+ output = ""
248
+ # Concatenate generated text
249
+ for response in stream:
250
+ output += response.token.text
251
+ return output.replace("</s>","")
252
+ except Exception as e:
253
+ logging.error(f"Error in text generation: {e}")
254
+ return "An error occurred during text generation."
255
+
256
+ def video_qa(self, question: str, model: str) -> str:
257
+ """
258
+ Performs video question answering.
259
+
260
+ Args:
261
+ question (str): The question asked by the user.
262
+ model (str): The language model to be used ("OpenAI" or "Mixtral").
263
+
264
+ Returns:
265
+ str: Answer to the user's question.
266
+ """
267
+ try:
268
+ if model == "OpenAI":
269
+ template = """you are the universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.otherwise reply i don't know.
270
+ extracted_text:{text}
271
+ user_question:{question}"""
272
+
273
+ prompt = PromptTemplate(template=template, input_variables=["text","question"])
274
+ llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm)
275
+
276
+ # Run the language model chain
277
+ result = llm_chain.run({"text":self.english_text,"question":question})
278
+ return result
279
+
280
+ elif model == "Mixtral":
281
+ # Generate answer using Mixtral model
282
+ result = self.generate(question,self.english_text)
283
+ return result
284
+ except Exception as e:
285
+ logging.error(f"Error in video question answering: {e}")
286
+ return "An error occurred during video question answering."
287
+
288
  def extract_video_important_sentence(self) -> str:
289
  """
290
  Extract important sentences from the transcribed video.
 
293
  str: Extracted important sentences.
294
  """
295
  try:
296
+
297
  # Tokenize the sentences
298
+ sentences = nltk.sent_tokenize(self.english_text)
299
 
300
  # Initialize TF-IDF vectorizer
301
  tfidf_vectorizer = TfidfVectorizer()
 
313
  sentence_rankings.sort(reverse=True)
314
 
315
  # Set a threshold for selecting sentences
316
+ threshold = 2.5 # Adjust as needed
317
 
318
  # Select sentences with scores above the threshold
319
  selected_sentences = [sentence for score, sentence in sentence_rankings if score >= threshold]
 
374
  logging.error(f"Error downloading video: {e}")
375
  return ""
376
 
 
377
  def main(self, video: str = None, input_path: str = None) -> tuple:
378
  """
379
  Perform video analytics.
 
386
  tuple: Summary, important sentences, and topics.
387
  """
388
  try:
389
+ video = VideoFileClip(input_path)
390
+ duration = video.duration
391
+ video.close()
392
+
393
+ if round(duration) < 600:
394
+ # Download the video if input_path is provided, otherwise use the provided video path
395
+ if input_path:
396
+ input_path = self.Download(input_path)
397
+ text = self.transcribe_video(input_path)
398
+ elif video:
399
+ text = self.transcribe_video(video)
400
+ input_path = video
401
+
402
+ # Generate summary, important sentences, and topics
403
+ summary = self.generate_video_summary()
404
+ self.write_text_files(summary,"Summary")
405
+ important_sentences = self.extract_video_important_sentence()
406
+ self.write_text_files(important_sentences,"Important_Sentence")
407
+ topics = self.generate_topics()
408
+ self.write_text_files(topics,"Topics")
409
+
410
+ # Return the generated summary, important sentences, and topics
411
+ return summary,important_sentences,topics
412
+ else:
413
+ return "Video Duration Above 10 Minutes,Try Below 10 Minutes Video","",""
414
 
415
  except Exception as e:
416
  # Log any errors that occur during video analytics
 
441
  Topics = gr.Textbox(show_label=False,lines=10)
442
  with gr.Row():
443
  topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button")
444
+ with gr.Tab("Video QA"):
445
+ with gr.Row():
446
+ with gr.Coulumn(scale=0.70):
447
+ question = gr.Textbox(show_label=False,placeholder="Ask Your Questions...")
448
+ with gr.Coulumn(scale=0.30):
449
+ model = gr.Dropdown(["OpenAI", "Mixtral"], label="Models")
450
+ with gr.Row():
451
+ result = gr.Textbox(label='Answer',lines=10)
452
  submit_btn.click(self.main,[video,yt_link],[summary,Important_Sentences,Topics])
453
+ question.submit(self.video_qa,[question,model],result)
454
  demo.launch()
455
 
456
  if __name__ == "__main__":